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 Why do we need meshes?

No mesh 

  No simulation
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 Why do we need meshes?

Low quality mesh 

  Low accuracy in the simulation
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1. Why do we need meshes?

▪ The simulation process

Generate a geometric model
valid for the simulation

Set boundary and initial conditions

Generate a mesh

Computational analysis

Visualization

Get/import a geometric model

Standard simulation process

Error estimation
Error > ε

Error < ε

Refine / Remesh

Visualization

Generate a geometric model
valid for the simulation

Set boundary and initial conditions

Generate a mesh

Computational analysis

Get/import a geometric model

Adaptive simulation process
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2. Geometry description

• How are geometries described? 
• CAD (brep)  

• Tessellation 

• Images Image from MeshGems Image from CADfix
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2. Geometry description

▪ Geometric models are developed mostly taking into account 
visualization, design, prototype and manufacture constraints 

▪ Can not be directly applied into a simulation process 
▪ They must be adapted to the simulation process:  

• Requirements prescribed by the physics of the problem 
• Requirements prescribed by the numerical method 

▪ Two major types of actions 
• De-featuring 
• Healing
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2. Geometry description

▪ De-featuring: removing geometrical details that are not 
relevant for the simulation process

Remove imprints or  
extrusions

Remove fillets, chambers,  
blend surfaces

Remove holes
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2. Geometry description

▪ Healing: repairing errors in the geometrical model
Watertight: all the volumes must be completely closed

Remove repeated entities

Other issues: lost entities, detached entities, 

peated entities

s: lost entities, detached entities,
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2. Geometry description

▪ How we can address theses issues? 
• Using CAD packages 

•  CadFix (ITI TranscenData) 
•  Creo Elements/Pro (ProEngineer) 
•  Catia (Dassault Systems) 
•  Solid Works (Dassault Systems) 
• Solid Edge (Siemens) 
•  Rhinoceros 

• Some meshing environments provides tools 
• Catia (Dassault Systems) 
• CD-Adapco (Siemens) 
• Ansys 
• Abaqus (Dassault Systems) 
• GiD



13

2. Geometry description

▪ How CAD models are linked to a meshing environment? 

▪ The geometry and the mesh of the model are represented by 
entities. 

▪ In both cases it is of the major importance to take into 
account: 

• The topological relationship between entities 
• The geometrical relationship between entities

CAD Model

Geometry 
kernel

Mesh Generation
kernel

Discrete Model
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2. Geometry description

▪ Geometry engines (kernels) 
•  Parasolid (Siemens) 
•  Acis (Dassault Systems) 
•  Open Cascade (Principia, open source engine) 

▪ Some engines provide a file format to import / export the 
model representation 
•  FBX/X_T (Parasolid) 
•  SAT (Acis) 

Other open file formats 
•  STEP 
•  IGES
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2. Geometry description

▪ CAD geometry representation
points: 
(x,y,z) location
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2. Geometry description

▪ CAD geometry representation
points: 
(x,y,z) location

Curves: 
bounded by two points
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2. Geometry description

▪ CAD geometry representation
points: 
(x,y,z) location

Curves: 
bounded by two points

Surfaces: 
closet set of curves

Volumes: 
closet set of surfaces

Wire (loop): 
ordered set of curves on surface
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2. Geometry description

▪ CAD geometry representation
points: 
(x,y,z) location

Curves: 
bounded by two points

Surfaces: 
closet set of curves

Volumes: 
closet set of surfaces

Wire (loop): 
ordered set of curves on surface

Edges: 
Orientation of a curve w.r.t. a loop
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2. Geometry description

▪ CAD geometry representation
points: 
(x,y,z) location

Curves: 
bounded by two points

Surfaces: 
closet set of curves

Volumes: 
closet set of surfaces

Wire (loop): 
ordered set of curves on surface

Shell: 
oriented set of surfaces 
comprising a volume

Edges: 
Orientation of a curve w.r.t. a loop
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2. Geometry description

▪ CAD geometry representatio
points: 
(x,y,z) location

Curves: 
bounded by two points

Surfaces: 
closet set of curves

Volumes: 
closet set of surfaces

Wire (loop): 
ordered set of curves on surface

Shell: 
oriented set of durfaces 
comprising a volume

Edges: 
Orientation of a curve w.r.t. a loop

Face: 
oriented surface w.r.t. a shell
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2. Geometry description

▪ CAD geometry representation
points: 
(x,y,z) location

Curves: 
bounded by two points

Surfaces: 
closet set of curves

Volumes: 
closet set of surfaces

Wire (loop): 
ordered set of curves on surface

Edges: 
Orientation of a curve w.r.t. a loop

Shell: 
oriented set of surfaces 
comprising a volume

Body (group): 
Collection of solids

Solid:

Face: 
oriented surface w.r.t. a shell
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2. Geometry description

▪ CAD geometry description

Manifold Geometry:

Each volume maintains its 
own set of unique surfaces

Volume 1

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6 Surface 7

Volume 2

Surface 8 Surface 9 Surface 10 Surface 11

Volume 1

Volume 2

Surface 7

Surface 11
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2. Geometry description

▪ CAD geometry description

Non-Manifold Geometry:

Volumes share matching 
surfaces

Volume 1

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6

Volume 2

Surface 8 Surface 9 Surface 10 Surface 11

Volume 1

Volume 2
Surface 11
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2. Geometry description

▪ CAD geometry description 
• Boundary Representation of the geometry (Brep) 
• Hierarchical classification of geometrical and topological entities

• From a meshing point of view, we are interested in non-manifold 
representation of a geometry 

• The hierarchical description of a CAD model can be exploited by 
the meshing algorithms

Entity  
dimension

Topological  
classification

Geometrical 
classification

0-D vertex point
1-D edge 

wire
curve

2-D face 
shell

surface

3-D solid 
body

volume
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3. Classification of mesh generation methods

▪ Type of meshes: depending on the number of adjacent elements to 
each inner node
Structured mesh (constant)       Unstructured mesh (non-constant)

Structured vs unstructured

Domain must verify some constraints Valid for arbitrary domains

More restrictive for dealing with non-constant 
element size

More flexible for dealing with non-constant 
element size 

Preferable for aligning elements with boundaries 
/ material properties

Can be used for aligning elements with 
boundaries / material properties

Easier to develop More complex to develop
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3. Classification of mesh generation methods

▪ Type of meshes: depending on the intersection between 
elements

Conformal mesh 
- Empty set or an entity of inferior 
dimension
- There are not any hanging nodes

Non-conformal mesh
- Empty set or part of an entity of 
inferior dimension
- There are hanging nodes

Conformal vs non-conformal
Flexible / restrictive for dealing with non-
constant element size 

More flexible for dealing with non-
constant element size 

More usual in industry Less usual in industry
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3. Classification of mesh generation methods

▪ Type of meshes: depending on the intersection between 
elements

Conformal mesh 
- Empty set or an entity of inferior 
dimension
- There are not any hanging nodes

Non-conformal mesh
- Empty set or part of an entity of 
inferior dimension
- There are hanging nodes

Image from D. Hue et.al.

Non-conformal meshes are useful for: 
• structured meshes  
                  + 
• large gradients in the element size
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3. Classification of mesh generation methods

▪ 2D meshes are composed by polyhedral elements 
▪ Most common 2D-element types: 

Triangle (3 edges) Quadrilateral (4 edges)

Mesh composed by 245 tris Mesh composed by 1413 quads
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3. Classification of mesh generation methods

▪ 3D meshes are composed by polyhedral elements 
▪ Most common 3D-element types: 

Tetrahedron (4 tris) Hexahedron (6 quads)

Mesh composed by 168 tetrahedra Mesh composed by 84 hexahedra 
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3. Classification of mesh generation methods

▪ 3D mixed meshes 
▪ Other 3D elements

Pyramids (4 tris & 1 quad) Prisms(2 tris & 3 quad)

Images from Pointwise (http://www.pointwise.com /)
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3. Classification of mesh generation methods

▪ 3D mixed meshes 
▪ Other 3D elements

Pyramids (4 tris & 1 quad) Prisms(2 tris & 3 quad)

Images from Pointwise (http://www.pointwise.com /)
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3. Classification of mesh generation methods

▪ Hierarchical mesh generation approach 

     Most of the meshing algorithms follow a bottom-up approach

Initial  

(adapted/healed) 

CAD model

Mesh points 

(0-D entities)

Mesh curves 

(1-D entities)

Mesh surfaces 

(2-D entities)

Mesh volumes 

(3-D entities)



34

3. Classification of mesh generation methods

▪ Classification of the meshing algorithms

Meshing
Algorithms

Structured

Unstructured

Quads/Hex

Tris/Tets

Mapped

Decomposition

TFI

Elliptic

Hyperbolic

Sub-mapping

Sweeping

Block decomposition

Quads/Hex

Delaunay

Advancing front

Octree based

Direct

Tri / Tet combine
Qmorph / Hmorph
Blossom

Advancing front

Grid based

Cross-Field

Dual 

Paving / Plastering
Unconstrained Plastering

Whisker Weaving
Sheet manipulation

Tris/Tets

Indirect

Primitives
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4. Structured mesh generation methods

▪ Why Structured meshes 
     Structured meshes are still preferred in a wide range of simulations where 
     a strict alignment of elements are required by the analysis: 

• boundary layers in computational fluid dynamics 
• composites in structural dynamics.

▪ Basic property 
Extremely fast and robust for specific (but  common in industry) 
geometries

▪ Classification 
• Kernel methods

• Methods based on primitives
• Methods based on Partial Differential Equations 
• Algebraic interpolation methods  (Transfinite Interpolation, TFI) 

• Decomposition methods
• Submapping 
• Sweeping
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4. Structured mesh generation methods

▪ Methods based on primitives 
Basic idea: identify simple geometrical shapes and mesh  

                        them with a predetermined template  

Properties:
• Limited applicability 
• High quality meshes 
• Implemented in several environments

333
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4. Structured mesh generation methods

▪ Methods based on Partial Differential Equations
     Extremely used in Computational Fluid Dynamics (CFD) 
     Used in industry as a kernel in multiblock decomposition 

▪ Properties 
• Smooth meshes
• Control on the orthogonality of the mesh edges
• Require solving numerically a PDE (cost)

Image from https://sourceforge.net/projects/construct2d Image from https://bog.poinwise.com
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4. Structured mesh generation methods

▪ Determine a coordinate transformation that maps 
the body-fitted non-uniform non-orthogonal physical space (x,y,z) 

  the transformed uniform orthogonal computational space (ξ,η,ξ)

Physical space Computational space

We require that:
• Any point of the computational space is mapped to a unique point of the physical space 
     (one-to-one)
• Each point of the physical space is the image of a point in the computational space (onto)  
We assume that mapping is smooth and that the Jacobian is not null

                                                                                (mapping ξ(x,y) is invertible).
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4. Structured mesh generation methods

The most common elliptic PDE used for grid generation is the Poisson 
equation:  

where P(ξ,η) and Q(ξ,η) are used to control the distribution of points: 

P(ξ,η)>0 the points are attracted to the “right” 
P(ξ,η)<0 the points are attracted to the “left” 
Q(ξ,η)>0 the points are attracted to the “top” 
Q(ξ,η)<0 the points are attracted to the “bottom” 

But this is not our objective !!! 
Our goal is to create a mesh in the physical domain by performing all the 
computations in the uniform rectangular space. 
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4. Structured mesh generation methods

▪ Our goal is to create a mesh in the physical domain by performing all the 
computations in the uniform rectangular space.  

▪ Since function                                is invertible we can define the inverse 
transformation 

▪ After some analysis we get

where                                          and

Physical space Computational space
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4. Structured mesh generation methods

▪ Laplacian method can be modified in order to control the shape of the grid 

▪ Other types of PDE are also used: hyperbolic equations  
▪ Extended to 3D problems 

Laplacian grid Grid with cell height control
Grid with boundary 

orthogonality control

Grid with cell height and 

boundary orthogonality control

Images from “Handbook of grid generation”, Thompson et al.

Image from http://rtech-engineering.com

quations 

Image from R. Schalps , S. Shahpar & V. Gümmer

also used: hyperbolic e
ms 

Image from J. P. Steinbrenner & J.R. Chawner
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4. Structured mesh generation methods

▪ Algebraic methods (Transfinite Interpolation, TFI) 
Transformations from a rectangular computational domain to an 
arbitrarily shaped physical domain delimited by 4-logical sides 
(2D) or 6-logical sides (3D) 

▪ Properties:
• Fast (compared with PDE based methods) 
• Direct control on the node location 
• Less control on the grid smoothness
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4. Structured mesh generation methods

▪ Mapping definition

The image of a discrete subset

is a structured mesh

with

being

Computational domain Physical domain
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4. Structured mesh generation methods

▪ Linear TFI in 2D 

TFI sets an univariate interpolation in each direction of the computational space

For the linear TFI the blending functions are (other types can be used: cubic Hermite, )  

We also consider the tensor product on these univariate interpolation

Finally, the transfinite mapping as the Boolean sum of the two interpolation

l ti i h di ti f th
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4. Structured mesh generation methods

▪ Grid spacing control 
• The spacing between points in the physical domain is controlled by blending 

functions:           and 
• Two approaches are used to control the spacing between points: 

• Design a blending function to generate the desired grid concentration 
• To define an intermediate control domain between the computational and physical 

domains
• We define the intermediate control space according to diate control space accord

Computational domain Physical domain

Control domain
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4. Structured mesh generation methods

▪ There exist a wide range of functions to define the intermediate space (the 
spacing of grid points). 

▪ One of the simplest choices is the single-exponential function 

     that maps                 onto 

A= 3A=0A=-3

e singggle-exponential function 
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4. Structured mesh generation methods

▪ Submapping 
A method to decompose and mesh a “blocky” geometry into 
simple pieces that are equivalent to a quadrilateral (2D) or a box 
(3D) 

Properties:
• Full automatic decomposition 
• Fast 
• The decomposition leads to a compatible meshing of blocks
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4. Structured mesh generation methods

▪ Overview of the algorithm 
     The submapping algorithm can be divided into two steps: 

• Decomposition of the geometry into blocks ensuring a compatibility
between patches

• Discretization of each patchusing kernel methods (PDE’s, TFI, ) 

Initial blocky geometry Decomposed geometry Meshed geometry

Important: fully automated process !!!
(the user only prescribes the element size)element size)
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4. Structured mesh generation methods

▪ Two representations of the geometry are used: 
• The physical space is the initial representation of the geometry 
• The computational space is a representation of the initial 

geometry in which each edge is parallel  to the coordinate axes.

Physical domain Computational domain

A B

D C

EF

A
B

DC

E

F



51

4. Structured mesh generation methods

▪ Vertex classification: 

▪ Edge classification

End

+i

+i

-i

+j

+j

-j

End

End End

End
Corner

▪ End: Inner angle close to 90º. 

▪ Side: Inner angle close to 180º 

▪ Corner: Inner angle close to 270º. 

▪ Reversal: Inner angle close to 360º

▪ +i: The  edge is horizontal and goes from left to right. 

▪ -i : The  edge is horizontal and goes from right to left.  

▪ +j: The  edge is vertical and goes from down to up. 

▪ -j : The  edge is vertical and goes from up to down.

End

+i +i

-i

+j

+j-j

End

End End

End

Reversal

+j

0o 90o 180o 270o 360o

End Side Corner Reversal
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4. Structured mesh generation methods

▪ For a structured mesh, we impose the compatibility conditions: 

▪ To keep the number of elements to a reasonable number, we will solve the 
following integer linear programming problem: 

     The solution to this problem provides a mesh for the boundary  
     that accepts a structured mesh in the interior.

is the number of elements on edge e.

More sophisticated objective function
can be defined to generate more 
accurate node distributions

We have at least       elements on edge e 
Upper limit on the number of elements on edge e
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4. Structured mesh generation methods

▪ Creation of the computational domain: once the number of intervals on each 
edge is computed we have to create them in the computational space 

▪ Selecting a cutting edge: the start of a cutting edge will be a node classified as 
corner or reversal 

     The cutting edge will be horizontal or vertical (the shortest one is selected)
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4. Structured mesh generation methods

▪ Splitting the domain: once a cutting edge is found, we proceed to split the 
domain and, recursively, iterate the process on each part 

     The process of decomposition ends when there are no corner nor reversal nodes 

▪ Discretization of each subdomain: we mesh each subdomain of the geometry 
using a classical structured mesh generator, for example TFI

y, p p
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4. Structured mesh generation methods

▪ Advanced issues 
• Domains with holes: how to locate them?

• Ensuring a correct classification of the vertices

Inner holes Through holes

How to classify these vertices? Is it a correct classification?

end

side

side

end

end

end
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4. Structured mesh generation methods

▪ Some examples
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4. Structured mesh generation methods

▪ Some examplesme examples
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4. Structured mesh generation methods

▪ Sweeping 
A method to decompose and mesh extrusion domains 

Classification 

Properties:
• Full automatic decomposition 
• The decomposition leads to a compatible meshing of blocks
• Fast

Extrusion Volume:  a surface is swept along a path. 
This volume is delimited by:
• Source surface

• Target surface  (#logical facesS = #logical facesT) 
Linking sides  (4 logical faces,  #lateral faces = 
#logical facesS)

Many-to-many sweepingMany-to-one sweepingOne-to-one sweeping
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4. Structured mesh generation methods

Basic tasks of a one-to-one sweeping

1. To mesh the source surface (structured or unstructured) 
2. To project the source surface mesh onto the target surface
3. To create structured meshes over the linking sides (TFI, …) 

Important: The structured meshes of the linking sides 
define the boundary of the inner layers

4. To project the cap surface meshes along the sweep path 
(creating the inner nodes)

5. Create 3D elements

Source surface

Target surface

Linking sidesSw
ee

p 
pa

th

Target surface mesh
Mapped from the source surface 
mesh
There is an underlying geometry 
describing the surface (usually 
from the CAD model) 

Inner layers
There is not a underlying surface defining the inner
layers 
The inner layers are defined by 
1. one outer loop
2. as many inner loops as inner holes
The inner layers are created using a weighted 
interpolation 
1- From the cap meshes
2. Layer by layer (in an advancing front manner)
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4. Structured mesh generation methods
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4. Structured mesh generation methods
· Initial surface and sweep path

· Sweep volume

· 0D mesh

· 1D mesh

· 2D mesh

· Source surface mesh
  (unstructured)

· Target surface mesh
  (projected using least-squares or 
  other methods)

· Linking sides meshes
  (structured, TFI)

· 3D mesh

· inner nodes 
  (projected using least-squares or
  other methods)
and 3D elements
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4. Structured mesh generation methods

▪ Some examples: one-to-one sweep meshes
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4. Structured mesh generation methods

▪ Some examples: many-to-many meshes 
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4. Structured mesh generation methods

▪ Some examples: many-to-many meshes 
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▪ Classification 
• Methods for triangular and tetrahedral meshes 

• Tree-based methods 
• Advancing front 
• Delaunay  
• Combined approaches (Advancing-front Delaunay approach) 

• Methods for quadrilateral and hexahedral meshes 
• Indirect methods 

• Qmorh / Hmorph 
• Blossom-quad 

• Direct methods 
• Grid based  
• Medial axis 
• Paving / Plastering 
• Cross field

5. Unstructured mesh generation methods
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▪ Triangular and tetrahedral mesh generation 
Triangular and tetrahedral meshes are preferred by several 
authors because: 
• Easier to adapt to geometric features of the model 
• Easier to adapt to large gradients in the element size field 
• Accept local refinement           easier to use in an adaptive 

strategy

5.a. triangular and tetrahedral meshing

Image from S. Borovikov et al.
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▪ Classification 
• Tree-based methods

• Use trees to describe the geometry
• Geometry details and size field are caught by tree refinement
• Use templates to catch the geometry 

• Advancing-front methods
• Starting at the boundaries, new layers of elements are added (outside-to-inside-

approach)
• High quality meshes (specially for boundary layers)
• Efficient and robust 

• Delaunay methods:
• Given an initial triangulation, new nodes are added according to Delaunay criteria 

(therefore, the connectivity is updated)  
• Theoretical results about the minimum angle of the triangulation
• Efficient and robust 

• Combined approaches (Advancing-front Delaunay approach)
• Increase the efficiency (intersection checking routine, ) and robustness (merging 

fronts, ) of the advancing-front method

5.a. triangular and tetrahedral meshing
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▪ Octree-based methods 
• How it works? 

• Basic steps 
• Create the tree 
• Generate the mesh  

• element size compatibility 
• boundary compatibility 
• cell subdivision (templates) 

• Optimize the mesh

5.a. triangular and tetrahedral meshing

Images from X. Liang & Y. Zhang
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▪ What’s a tree? 
Hierarchic data structure (used here to localize points in space) 

Efficient algorithms to move through the tree 
• vertical (top-down, bottom-up) traversal:  O(N log(N)) 
• horizontal (neighbor at the same level): traversal:  O(1) 

5.a. triangular and tetrahedral meshing

Root quad

Branch (parental quad)

Leaf (terminal quad)
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▪ One-level difference rule enforcement (tree balancing)
each two cells sharing at least an edge are at the same or 
subsequent levels of hierarchic tree data structure  

▪

    Smoother transition in the element size !

5.a. triangular and tetrahedral meshing
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▪ Boundary refinement using a recursive subdivision until 
prescribed tolerance 
• desired cell size, desired cell level 
• geometry features (curvature, geometric details, )  

▪ Global refinement by recursive subdivision according to the 
prescribed element size (background mesh, grid, sources) 

▪ Terminal cell classification  
• interior / boundary / exterior 
• in / out test (round-off errors!!!)

5.a. triangular and tetrahedral meshing
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▪ Once we have the tree we generate the mesh: 
• Exterior cells are deleted 
• Inner cells are partitioned using templates 

• one-level difference rule             one midside maximum 
• Finite number of templates 

• Boundary cells 
• We only mesh the inner part of the mesh 
• Compatibility between the boundary and cell 

• Global smoothing (no new nodes or elements !!!)

5.a. triangular and tetrahedral meshing
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5.a. triangular and tetrahedral meshing

▪ Examples

Images from J. Wang & Z. Yu

Images from N.Molino et.al.
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▪ Advancing front method 
• Pre-meshed boundary 
• Layers advance inward from the boundaries 

         nice alignment with the boundaries (boundary layers) 
• The front is a dynamic data structure (grows / reduces / appears 

/ disappears) 
• Several fronts may exist

5.a. triangular and tetrahedral meshing
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▪ Main algorithm 
1. Data input (boundary mesh, T,  and element-size field) 
2. Initialization of the front, F, with T
3. Analysis of the front F as long as F is not empty

• Select a front entry, f (based on a criterion)
• Determine the best point position Popt 

• Determine if a point P exists in the current mesh that should be used 
instead of Popt

• Generate element K using f and Popt

• Check if element K intersects any mesh entity. 
4. Update the front and the current mesh

• Remove f from front F and any entity of F used to form K
• Add those entities of the new element K that belongs to the new front 
• Update the current mesh T 

5. If the front is not empty, return to step 3 
6. Mesh optimization

5.a. triangular and tetrahedral meshing
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▪ Algorithm illustration

5.a. triangular and tetrahedral meshing
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▪ Critical aspects of the method: 
• Robustness. 

• The identification of the local situation at some neighborhood of a 
point 

• Numerical precision (round off errors): checking for intersection of 
edges, faces, 

• Processing time. 
• Extensive searching, sorting and checking routines 
• Efficient data structure: efficient access to the “neighborhood” of 

given entity  (Alternating Digital Tree, ADT)
• Quality.  

• No theoretical results on the quality of the final mesh 
• Isotropic and anisotropic meshes 

5.a. triangular and tetrahedral meshing

sion (round off errors): checking for intersection o

hing, sorting and checking routines 
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▪ Some examples

5.a. triangular and tetrahedral meshing

Images from R. Lohner
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▪ Some examples

5.a. triangular and tetrahedral meshing

Images from R. Lohner
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▪ Some examples

5.a. triangular and tetrahedral meshing

Images from  
Y. Ito et al
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▪ Delaunay based methods 
Given a set of s points  
we define the Voronoi diagram associated to S as the set of cells

• Vi are the set of points closer to Pi than any other point in S
• Vi are closed (bounded or not) polygons
• They tile the space 

Joining all the pairs of points Pi and Pj across polyhedral boundaries result in 
a triangulation of the convex hull of S.
This triangulation is called Delaunay Triangulation (DT)

5.a. triangular and tetrahedral meshing

diagram associated to S as theS

PPiiP and i PjjP  across ppolyyhejj dral boundaries result eed
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Theoretical properties 
Empty Circle criterion: The circumcircle around every triangle of the DT contains no 
vertices of the triangulation other than the three vertices that define the triangle

Min-max criterion: Of all possible triangulations of a group of vertices, the DT is the one 
that maximizes the minimum angle in the triangulation

Min circumcircle criterion: The DT minimizes the largest circumcircle that can be 
constructed around any triangle

5.a. triangular and tetrahedral meshing

Min-max criterion: Of all ppossible triangulations of a ggroupp of vertices,, the DT is the onnnggulat
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Algorithms 
•Topological flipping Algorithms.  They generate a Delaunay 
triangulation without using the Voronoi diagram

Lawson C.L. (1977)  

•Non-incremental  algorithms. They require all vertex positions to 
be known in advance.

Divide and Conquer algorithms
Shanos M.I. & Hoey D. (1975)

  Lee D.T. & Schachter B.J. (1980) 
  Guibas L. & Stolfi J. (1985)  

Sweep line algorithms
  Fortune S.J. (1987) 
  Zalik B. (2005)  

5.a. triangular and tetrahedral meshing
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•Incremental algorithms (point insertion algorithms). Vertices are 
added to the triangulation one at the time.

Green P.J. & Sibson R. (1978)  
   Bowyer & Watson algorithm 
    Bowyer A. (1981) 
    Watson D.F. (1981)

Issues: 
• Insertion point criterion 
  Chew P.L. (1993) 
  Weatherill N.P. (1993) 
  Rupert (1995) 
  Borouchaki H.& George PL. (1997) 

• Reconnection of the inserted point to the triangulation while 
maintaining the Delaunay properties of the mesh.  

5.a. triangular and tetrahedral meshing
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•Incremental algorithms (point insertion algorithms).  
Edge-flipping algorithm (Lawson, 1977)

Algorithm:
1. Form initial triangulation using boundary points and outer box
2. Replace an undesired element (bad or large) by inserting its 

circumcenter, and split it into three triangles
3. If any of the circumcircle these triangles contain the opposite corner node 

of a neighbouring triangle flip the diagonals
4. For every new triangle created by flipping the circumcircle test also has 

to be carried out
5. Repeat until mesh is good 

Properties:
• Will converge with high element qualities in 2-D 
• Does not extend to 3D

5.a. triangular and tetrahedral meshing

initial triangulation using bbbbboundary points and
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•Incremental algorithms (point insertion algorithms).  
Insertion polygon method (Bowyer – Watson, 1981)

Algorithm:
1. Form initial triangulation using boundary points and outer box
2. Replace an undesired element (bad or large) by inserting its 

circumcenter
3. Identify all triangles such that the new point falls inside their circumcenter 

(this enclosed polygon is called the insertion polygon)
4. Retriangulate the insertion polygon 
5. Repeat until mesh is good

5.a. triangular and tetrahedral meshing
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•Incremental algorithms (point insertion algorithms).  
Insertion polygon method (Bowyer – Watson, 1981)

Algorithm:

Properties:
• Will converge with high element qualities in 2-D
• Extends to 3D 
• Very fast – time almost linear in number of nodes

5.a. triangular and tetrahedral meshing

Algorithm:
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Quality of the elements: 

Bad shaped elements can be generated

5.a. triangular and tetrahedral meshing

Sliver tet Splinter tetSpear tet Needle tet
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Geometric predicates:
The two well-known predicates needed for Dealunay triangulations are:
• The orientation test 

5.a. triangular and tetrahedral meshing

Decides on which side of the line 
defined by two points lies a third point 

Decides on which side of the plane oriented by 
three non-aligned points lies a third point 
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• The in-sphere test 

5.a. triangular and tetrahedral meshing

Given three positive oriented points, decides 
when a fourth point lies inside the 
circumscribing circle of the three points

Given four positive oriented points, decides 
when a fifth point lies inside the 
circumscribing sphere of the four points

p q
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To make the incremental algorithms more robust it is needed to 
incorporate: 

▪ More checking and correction procedures 
 [Borouchaki H, George PL, Lo SH, IJNME 39 3407-3437 (1996)] 

▪ Adaptive precision floating point arithmetic and fast robust geometric 
predicates 

[Shewchuck JR. “Delaunay Refinement mesh generation” PhD thesis,  
              Carnegie Mellon University, Pittsburgh, USA (1997)] 
 [http://www.eecs.berkeley.edu/~jrs/]

5.a. triangular and tetrahedral meshing
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Boundary recovery (Constrained Delaunay) 
For non-convex domains Dalaunay triangulation  
may not conform to the boundary or might not  
respect a given set of edges 

Local edge flip

Point insertion (constraint partitioning)

Enforcing the constraints (specific algorithms)

5.a. triangular and tetrahedral meshing

y) 
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▪ Some examples

5.a. triangular and tetrahedral meshing

Image from A. Loseille and R. Löhner
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▪ Some examples

5.a. triangular and tetrahedral meshing

Image from F. Alauzet and D. Marcum 
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Image from F. Alauzet and D. Marcum 
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▪ Some examples

5.a. triangular and tetrahedral meshing

Image from F. Alauzet and D. Marcum 
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▪ Some example

5.a. triangular and tetrahedral meshing

Images from A. Loseille 
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5.a. triangular and tetrahedral meshing

Images from A. Loseille 
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▪ Some example

5.a. triangular and tetrahedral meshing

Images from A. Loseille 
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▪ Quadrilateral and hexahedral mesh generation 
Quadrilateral and hexahedral meshes are more constrained, and 
therefore much more difficult to generate. However: 
• Preferred by several authors (mixed formulations) 
• Perform better in some applications where a strict alignment of 

elements can be required by the analysis: 
• boundary layers in computational fluid dynamics  
• composites in solid mechanics

5.b. Quadrilateral and hexahedral meshing

955

y
p
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▪ Classification 
• Indirect methods 

• Tri/tet Combine 
• Qmorph, Hmorph 
• Blossom 

• Direct methods 
• Grid based methods: quadtrees (2D), octrees (3D) 
• Medial axis 
• Advancing front methods: Paving (2D), Plastering (3D) 
• Partition methods: Gen4U 
• Cross field methods 

• Dual methods 
• Whisker Weaving 
• Sheet manipulation

5.b. Quadrilateral and hexahedral meshing

96

Plastering ((33DD))g (( )

D), octrees (3D) 
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▪ Indirect methods 
• All methods work well for 2D problems 
• Do not guarantee a full unstructured hex mesh in 3D 

▪ Tri/Tet combine 
• Two triangles can be combined to generate a quad 

• A triangle can be subdivided in three quads 

• The algorithm starts at a given boundary. 
• The principal operation is merge adjacent triangle. The algorithm 

select the “best choice”. 
• However, triangle splitting can also occur. 
• The algorithm delivers an all-quad mesh

5.b. Quadrilateral and hexahedral meshing
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▪ Qmorph / Hmorph 
• Uses an advancing front approach
• Local swaps applied to improve resulting quad
• Any number of triangles merged to create a quad
• Hex dominant meshes in 3D

5.b. Quadrilateral and hexahedral meshing

Images by Steve Owen
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▪ Qmorph / Hmorph 
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▪ Grid based methods

5.b. Quadrilateral and hexahedral meshing
1. Generate regular grid of 
quads/hexes on the interior of 
model

2. Mark inner elements that do 
not touch the boundary.

3. Remove elements outside 
the domain

4. Fit elements to the boundary 
by projecting interior faces 
towards the surfaces

Note that:

• Lower quality elements near 
boundary

• Non-boundary conforming

• Extended to 3D. However low 
quality elements may appear at 
the boundary (on going 
research)
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▪ Grid based methods 
• Graded meshes (mesh refinement) is obtained using quadtree 

(2D) or octrees (3D) 

• Also used to generate tetrahedral meshes 
• Specific topological operators and smoothing techniques are 

typically used to conform curved boundaries

5.b. Quadrilateral and hexahedral meshing
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▪ Medial axis 
• The Medial Axis (or skeleton) of a 2D region is defined as the 

locus of the center of all the maximal inscribed circle of the 
object.  

• Extension to 3D: medial surface or surface skeleton of a 3D 
object is the locus of centers of maximally inscribed balls  

• Can be understood as a n-1 representation of an n-dimensional 
object 

• Extensively used in many disciplines:  
     computer graphics, medical imaging, computer aided design, visualization, 
     digital inspection, metrology, robotics, ... 

5.b. Quadrilateral and hexahedral meshing

Image from A. Tagliasacchi et al.
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▪ Mesh generation: used to obtain a bloc decomposition of the 
domain into simple subregions suitable for meshing with 
hexahedral elements 

▪ Advanced algorithms to compute an approximation of the the 
medial surface

5.b. Quadrilateral and hexahedral meshing

Each part can be meshed 
with a compatible quad 
mesh

Medial axis is sensitive to 
small boundary 
perturbations

Degeneration to a line Degeneration 
to a point
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▪ Some examples

5.b. Quadrilateral and hexahedral meshing

Image from M.A. Price & C.G. Armstrong

Images from W.R.Quadros

Images from P. Sampl
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▪ Paving method (2D) / PLASTERING (3D)
• Pre-meshed boundary
• Layers advance inward from the boundaries

5.b. Quadrilateral and hexahedral meshing
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▪ Paving method (2D) / PLASTERING (3D)
• Pre-meshed boundary
• Layers advance inward from the boundaries

▪ Advantages:
• Fully automatic
• High quality meshes near the boundary
• Boundary meshes are respected (compatibility)

▪ Drawbacks
• May lead to mixed meshes in 3D
• Time consuming

5.b. Quadrilateral and hexahedral meshing
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▪ Main operation 

• Node classification 

• Node location 
• Wedge insertion (expanding areas) 
• Tuck formation (contracting areas) 
• Seaming 

• Small domains are closed using templates (loop closure) 

• Front collision

5.b. Quadrilateral and hexahedral meshing

contracting

expanding

contracting
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▪ Node classification 
• Definition of node types from the internal angles

5.b. Quadrilateral and hexahedral meshing

End

Reversal

Side

Corner

0o 90o 180o 270o 360o

End Side Corner Reversal
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▪ Node location

5.b. Quadrilateral and hexahedral meshing

Element generation 
at a row end node

Node and element generation 
at a row side node

Node and element generation 
at a row corner node

Node and element generation 
at a row reversal node
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▪ Node location: wedge insertion

5.b. Quadrilateral and hexahedral meshing

Node Ni is moved to position 1 
and another node is created at 

position 2

A new quadrilateral 
element is inserted

Afterwards the front 
is smoothed
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▪ Node location: tuck formation

5.b. Quadrilateral and hexahedral meshing

Contraction of size 
of the element 
sides

Two quadrilateral 
elements are 
removed

Node Ni+1 is 
merged with node 
Ni-1 and a new 
quadrilateral 
element is formed

The front is 
smoothed after tuck 
formation
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▪ Seaming

5.b. Quadrilateral and hexahedral meshing

The front overlaps with itself
Nodes Ni-1 and Ni+1
are merged into Nj

The small angle at node Nj is 
eliminated by merging nodes Nj-1

and Nj+1

Seaming is delayed to avoid 
the formation of a badly 
shaped quadrilateral element

Paving front overlaps itself Seaming is performed

j+1
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▪ Small domains are closed using templates (loop closure) 

▪ Extends to 3D (PLASTERING) 
• Fails to generate a fully unstructured hex mesh for some 

geometries 
• Hex meshes are too much constrained !

5.b. Quadrilateral and hexahedral meshing
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▪ Unconstrained Plastering 
• Unmeshed boundary 
• Layers advance inward from the boundaries

5.b. Quadrilateral and hexahedral meshing
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▪ Unconstrained Plastering
• Unmeshed boundary
• Layers advance inward from the boundaries

5.b. Quadrilateral and hexahedral meshing
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▪ Unconstrained Plastering
• Unmeshed boundary
• Layers advance inward from the boundaries

▪ Advantages:
• Fully automatic
• High quality meshes near the boundary

▪ Drawbacks
• May lead to mixed meshes
• Time consuming

5.b. Quadrilateral and hexahedral meshing



114

5.b. Quadrilateral and hexahedral meshing

Images from M. Staten et al.
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5.b. Quadrilateral and hexahedral meshing

Images from M. Staten et al.
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5.b. Quadrilateral and hexahedral meshing

Images from M. Staten et al.
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5.b. Quadrilateral and hexahedral meshing

Images from M. Staten et al.
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▪ Cross field based methods 
• These methods initially sought a globally smooth 

parameterization of the surface that does not require any 
previous partition of the geometry. 

• These parameterizations are derived from a  
    directional field 

• Curvature 
• Based on a PDE 

• They provide well shaped  
    quadrilateral regions that  
    are almost structured

5.b. Quadrilateral and hexahedral meshing

Images from N. Ray et al.Images from F. Kälberer et al.
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▪ These cross fields are used to compute an automatic 
partitioning of an arbitrary geometry  

▪ The cross field is prescribed on the boundary and propagated 
towards the inner part using 
• PDE
• fast marching algorithm  

▪ Similar to sub-mapping but  
• for arbitrary geometries !!!
• solve a PDE instead of linear integer problem

▪ A compatible quad mesh is generated from the partitioning

5.b. Quadrilateral and hexahedral meshing

Images from N. Kowalski et al.
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▪ The method can be extended to surfaces 

▪ Also extended to hexahedral meshes 

▪ Still exhibit some limitations 
• No guarantee of all-hex mesh for any
• Further research is needed to deal with non-constant element size 

5.b. Quadrilateral and hexahedral meshing

Images from H.J. Fogg et al.

Images from Y. Li et al.
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Layout of the course

1. Why do we need meshes? 

2. Geometry description 

3. Classification of mesh generation methods 

4. Structured mesh generation methods 

5. Unstructured mesh generation methods 

6. Mesh optimization and mesh adaption 

7. Concluding remarks
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6. Mesh optimization and mesh adaption

▪ Summary 
• Mesh optimization 

• Quality measures 
• Topological mesh optimization techniques 

• Tri / Tets 
• Quad / Hexes 

• Mesh smoothing techniques 
• Geometry based methods 
• Optimization based methods 

• Mesh adaption 
• Basic concepts 
• Embedded adaption 
• New mesh generation

2D Images from V. Dolejsi
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6. Mesh optimization and mesh adaption

▪ Quality measures 
• Element quality. A continuous strictly monotonic function

▪ maximum for an ideal element and minimum for degenerated elements 

▪ invariant under translation, rotation, reflection and uniform scaling 

•  Mesh quality. Based on the quality of the elements in a mesh:
• Minimum / Maximum
• Arithmetic average / Geometric average

ti t ti
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6. Mesh optimization and mesh adaption

▪ Examples 
▪ Ratio between the inradius and the longest edge 
▪ Ratio between the inradius and the circumradius
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6. Mesh optimization and mesh adaption

▪ Which is the ideal for a given problem? 

▪ Algebraic quality measures

We can compute fS

Shape Distortion

Shape Quality

Quality

Distortion

Invalid Valid
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6. Mesh optimization and mesh adaption

▪ Topological mesh optimization techniques 
• Objective. Improve the quality of a given mesh by 

modifying the mesh topology (connectivity)
• Classification. According the dimension and element type

• Simple in 2D
• More complicated in 3D 

• Tetrahedra. Optimize the number of edges around a node and the 
number of faces around and edge. Complex series of local 
topology operators !!

• Hexahedra. Difficult !! Local modifications propagate far away

• 2D 
Triangles 
Quadrilaterals

• 3D 
Tetrahedra 
Hexahedra
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6. Mesh optimization and mesh adaption

▪ Triangles (1/2)
• Edge swapping. Swap the shared edge of two triangles forming 

a convex quadrilateral. It is the only local topological operator in 
two dimensions. 

• Node suppression. The set of the possible remeshings of the 
polygon related to the triangles around a node are analyzed (in 
terms of quality). Optimum remeshing is chosen.

The 5 triangulations related to a 5 points polygon5 triangles around
a node
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6. Mesh optimization and mesh adaption

▪ Triangles (2/2)
• Edge suppression. Replace an edge by a node

• Edge splitting. Replace 2 triangles sharing and edge by 4 
triangles adding a node along the shared edge.
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6. Mesh optimization and mesh adaption

▪ Quadrilaterals
• Node suppression. Suppress all nodes with only to adjacent 

quadrilaterals (doublet).

• Element removal.   

• Edge removal.
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6. Mesh optimization and mesh adaption

▪ Quadrilaterals boundary clean up
• Element removal at boundary.

• Element open at boundary. 

• Removal of an element with  two edges on boundary. 

boundary
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6. Mesh optimization and mesh adaption

▪ Tetrahedra 
• Face swapping. Each inner face separates two tetrahedra, 5 

nodes. There are two configurations:
• Inner tetrahedra. From 2 to 3 tetrahedra adding interior edge.

• Coplanar boundary. Base are coplanar on the boundary. We can 
switch from 2 to 2 tetrahedra by swapping inner face.

Coplanar trianglesat boundary
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6. Mesh optimization and mesh adaption

▪ Hexahedra 
• Doublet. 2 quadrilateral faces sharing 2 edges !!

doublet

doublet face

2 hexahedra2 quadrilaterals

?
We cannot delete top and bottom edges 

doublet face

doublet face

doublet face

doublet node

doublet node
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6. Mesh optimization and mesh adaption

▪ Hexahedra 
• Pillowing (nonlocal in 3D): 

• For every doublet face find shrink set 

• Shrink sets 

• Connect
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6. Mesh optimization and mesh adaption

▪ How to apply topological operators? 

1. Select a sequence of local operators 
• Ordered sequence of operators: some operators can destroy 

improvements of previous ones !!
2. For each operator  

• Calculate mesh quality 
• Select those elements to be improved 
• Use topology operators and propose solutions 
• Calculate the quality for the proposed solutions 
• Select best solution (initial or proposed solutions) 

3.  Use next operator, step 2
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6. Mesh optimization and mesh adaption

▪ Mesh smoothing 
▪ Objective: Improve the quality of the mesh by changing the 

location of nodes (no topological modifications) 

▪ Classification:
• Laplacian like methods 
• Based on mechanical analogies 
• Optimization based methods
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6. Mesh optimization and mesh adaption

▪ Laplacian smoothing 
• General overview 

• A number of smoothing techniques are lumped under this name  
• It is the most commonly used and the simplest smoothing method.  
• It can be applied to 2D (plane and surfaces) and 3D geometries. 

• Advantages: 
• This method is inexpensive to compute  

• Drawbacks: 
• It does not guarantee an improvement in the mesh quality 

• Sometimes generate poor quality meshes 
• Sometimes generate meshes with tangled elements (inner nodes 

move out of the domain)
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▪ Laplacian smoothing 
• For a structured and regular mesh: 

• Extension to unstructured meshes

6. Mesh optimization and mesh adaption
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▪ A more general formulation for the Laplacian method 
This figure suggests a single isoparametric element with curved sides and 
with the origin of the isoparametric coordinates at node “i “ 

Generalization for non structured meshes:

6. Mesh optimization and mesh adaption

The new location of node “i” is

ω=0        laplacian method 

ω=1        isoparametric method
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Extension to graded meshes:

6. Mesh optimization and mesh adaption

ω=0
Laplacian method

ω=1
Isoparametric method

ln is called the characteristic length 
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▪ Extension to triangular meshes 

All these methods has been extended to 3D (tets and hexes)

6. Mesh optimization and mesh adaption
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▪ Smart Laplacian 
• No effort is made to ensure that mesh quality is improved 
• Poor elements (even tangled elements) can be generated 

• Smart Laplacian algorithm

6. Mesh optimization and mesh adaption

For each node 
• Compute a quality measure: 

• Compute the new position: 

• Compute the new quality: 

• If 
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▪ Optimization based methods 
• Minimization of an objective function:  
• Several merit functions can be used: shape distortion measure

6. Mesh optimization and mesh adaption

Shape Distortion

Shape Quality

Vertical Barriers !!!

Not can be used in a continuous 
optimization procedure !!!
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▪ Regularization of the shape distortion measure

6. Mesh optimization and mesh adaption

No  Barriers !!!

Can be used in a continuous 
optimization procedure !!!

Untangle capabilities !!!
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Layout of the course

1. Why do we need meshes? 

2. Geometry description 

3. Classification of mesh generation methods 

4. Structured mesh generation methods 

5. Unstructured mesh generation methods 

6. Mesh optimization and mesh adaption 

7. Concluding remarks
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8. Concluding remarks

▪ Mesh generation is
• a required step in the numerical simulation process 
              has a major impact in industry

• directly related to the geometry representation (CAD model, 
images, )

• directly related to the physics of the problem
• directly related to the numerical method used in the 

simulation
• a thrilling research field where engineering and 

mathematical skills are combined
• a path that we are paving

Torture Painful process
Innocuous treatment

Pleasant experience
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8. Concluding remarks

▪ Research lines (tentative list)
• Automatic geometry (CAD, image, ) adaption (cleaning, 

healing, )
• Automatic geometry decomposition
• Unstructured hexahedral mesh generation (there not exist an 

automatic unstructured mesh generation algorithm for 
hexahedral meshes)

• Anisotropic mesh adaption 
• High-order mesh generation  
• Mesh morphing
• N-1 model representation (medial axis, skeletons, )
• Specific methods/applications require specific meshes:

• always something to do 
• hopefully we will still get paid !!! 
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8. Concluding remarks

▪ Suggested readings
• Thompson J.F., Soni B.K., Weatherill N.P, Handbook of Grid 

Generation, CRC Press, 1999  
• Frey P., George P.L., Mesh Generation, John Wiley & Sons, 

2000  
• George P.L., Borouchaki H., Delaunay Triangulation and 

Meshing, Hermes, Paris, 1998  
• Lo, S.H., Finite Element Mesh Generation. London: CRC Press, 

2015 
• Topping B.H.V., Muylle J., Putanowicz R. Cheng B., Finite 

Element Mesh Generation, Saxe-Coburg Publications, 2004 
• Knupp P., Steinberg S., Fundamentals of Grid Generation, CRC 

Press, 1993 
• International Meshing Roundtable (http://imr.sandia.gov/)
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Thank you !


