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The aero-hydro-center
The apparent flow velocity
The panel method

Hypotheses and goals(idem)

Hypotheses

The reduce frequency fr is small -> quasi-static approach ;

The boat is rigid (but the mast is flexible for the future) ;

The aerodynamical forces on the sails are coupled : jib and main sail ;

The rudder is assumed to be rigid but articulated ;

The foils have several degrees of freedom (pitch+rake and heave...) ;

A control system can be included in the foils (in the example).

Goals for the future...

Ensure the dynamic stability of the flying ship ;

Define a control system in order to fight external perturbations ;

To learn about flying ships : tacking, overtaking, waves, wake... ;

Suggest a real time strategy for sailing to the skipper.

Las Palmas June 2018Ph. Destuynder Quasi-static aeroelasticity and flying boats



Hypotheses and goals
Simple examples of a bridge and of a military aircraft

An application to a flying boat
Conclusions for the flying sailing boats

The aero-hydro-center
The apparent flow velocity
The panel method

The aerodynamic center and the force center

On a rigid body the aero-hydro-forces are represented by a torsor.

Let us set : T (P) = (F ,M(p)) with M(P) = M(0) + F ∧ OP.

Definition (The force center)

The force center is define as the point Pc solution of : M(Pc) = 0. It doesn’t
exist in general ; it is not unique in 3D (but it is in 2D).

Definition (aer-hyd-ro center)

There is a point (non unique) where the euclidian norm of M(Pf ) is minimal.
We call it the aero-hydro-center. It is solution of Details :

min
P∈R3

(F ∧ OP).(F ∧ OP)− 2(F ∧ M(0)).OP; and for uniqueness : (F .OPf )3 = 0

Remark

Sometimes Pc = Pf (good case always true in 2D for a boat, not for an
aircraft because of the weight Details )
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Basic property of Pf

Let assume that the forces applied are depending linearly on the parameters
(for instance, an angle of attack α). This is a general situation.

Case of a single parameter

If one has : F = αF0 and M(0) = αM0. Then Pf is unchanged with respect to
α (simplify by α2). At this point the moment is independent on α.

Case of several parameters (pitching α, rolling β and yawing γ)

Because the matrix and the right handside of the model characterizing Pf is a
second order dependent with respect to this parameter the point Pf doesn’t
move at the first order in the vicinity of the origin.

Remark (Conclusion concerning Pf )

Pf is a nice point for the description of the movement of a rigid structure.
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The apparent flow velocity at Pf

Va = Vabsolu − V (Pf )

Let (ex , ey , ez) be an Eiffel frame for a
given substructure. The three angles are :

Pitch : α = −arccos(
(ex .Va)

||Va||2
),

Roll : β = −arccos(
(ez .Va)

||Va||2
),

Yaw : γ = −arccos(
(ey .Va)

||Va||2
).

Vabsolu = Vex

||Va||2 = V

√√√√1 + 2V (ex .V (Pf )) +
||V (Pf )||22

V2
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The panel method in 2D (poor but cheap and fast...)

The aerodynamical coefficients depend
on the three angles α, β, γ

The model used in the panel method

∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0 in Ω,

∂ϕ

∂ν
= 0 on Γ∞,

∂ϕ

∂ν
= −V (ν.ex ) on Γs,

∫
Γs ϕ = 0 for instance.

Then Expl (+ compressibility/viscosity ...)

ϕ =
∑

i=1,P
Ksi

√
r cos(

θ

2
)η(x, z) + ϕR .

Cx (Γsi ) = −
1

SV2

∫
Γsi

[| ∂ϕ

∂s
|2](ν.ex )ds =

πK 2
si

2SV2
(esi .ex )

esi unit vector of the trailing edge of Γsi .
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A military aircraft in our wind tunnel

The Tacoma bridge

The story happened on the November 11 1940. This phenomenon is at the

origin of the theory of the :
Aeroelasticity.

The story of the break down Nasa

There was a science professor
(miracle !)

The notations

Wind speed :
V � 72 km/h � 20 m/s ;

Width of a cross section :
L � 10 m ;

Strouhal number : St � .1 ;

Reynolds number ;
Re � 20×10×1.2

2.6 10−5 � 107 ;

Reduce frequency :
fr � .05 << 1!.
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The Tacoma bridge
A military aircraft in our wind tunnel

There was many explanations... but the right one
came only in the late 70th

1 Von Karman suggested that the accident was induced by famous
vortices (but the Strouhal number is not correct according to the
structure and the frequency, furthermore the Reynolds number is much
too large for Strouhal instabilities !

2 The resonance mechanism which destroyed the bridge of Angers in
1860.

3 The classical flutter which occurs at a particular velocity when two (at
least) eigenmodes have the same frequency (� 1980) but eliminated
from a computational and experimental Japanese study.

4 The galloping (heaving movement discussed by J. Den Hartog was
suggested in � 1980). It is certainly at the origin of the movement of the
bridge.

5 The stall flutter in torsion (R. Scanlan � 1981) .
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Von Karman (the VK-paths)

Let us consider a wire with diameter D. For low speed flow, (Re < 104), one
can observe boundary layer instabilities which are well organized.
These instabilities induce transverse forces at a Strouhal frequency (� .2 U

D ),
and for a H cross section as Tacoma : (� .1 U

D ) or else 2 Hz.

Calcul NS-incomp.

But the frequency observed on the movie of Tacoma collapse is � .2 Hz.

Las Palmas June 2018Ph. Destuynder Quasi-static aeroelasticity and flying boats



Hypotheses and goals
Simple examples of a bridge and of a military aircraft

An application to a flying boat
Conclusions for the flying sailing boats

The Tacoma bridge
A military aircraft in our wind tunnel

Resonance

When the excitation frequency is close to an eigenfrequency of a flexible
structure, one can observe a resonance phenomenon. The singing glass is
an example.
In 1860 the bridge of Angers "discovered" the trick and collapse down.

"You have "to break the step" if you don’t want to break the bridge"

Before After
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Classical flutter

This phenomenon was discovered on american fighters Wild Cat, but was
well understood few years latter. At the beginning engineers were tempted to
make flutter responsible of any aerodynamical crashes.

The numerical simulation on a complex structure is not an easy job because
of the violence of the instability. Nevertheless the NAL laboratory (japan) did
a convincing study proving that the classical flutter was not responsible of
Tacoma collapse....

Flutter in situ Flutter
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The galloping of a bridge

It is a vertical movement as the one of a horse back !

It creates an apparent wind : Va = V − u,
V is the absolute wind and u the one of the structure.
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J. Den Hartog criterion

The movement is a translation in the vertical direction : Jacob Den Hartog

The model (α is the angle of attack at rest) :

Mz̈ + Kz = f (z, ż), z(0) = ż(0) = 0,

and by linearizing for (z, ż) small :

Mz̈ − ∂f
∂ż (0, 0)ż + (K − ∂f

∂z (0, 0))z = f (0, 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (z, ż) = �S||Va||2
2

[cx(αa) sin(αa − α) + cz(αa) cos(αa − α)]

et , Va = Ve1 − że2, ||Va||2 = V 2 + ż2,

αa = α− arctang(
ż
V
)
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Den Hartog criterion

Derivatives of f about ż = 0, αa = α

In fact f only depends on ż, not on z ;

αa � α− ż
V
,
∂αa

∂ż
= − 1

V
, ||Va||2 � V 2 ;

− ∂f
∂ż

(0, 0)�D=
�SV

2
[cx(α)+

∂cz

∂α
(α)] ;

∂f
∂z

(0, 0) = 0 ;

The linearized model is :

Mz̈ + Dż + Kz = f (0, 0),
z(0) = ż(0) = 0.

Solutions pour D > 0

Solutions pour D < 0

D is the aerodynamical damping.
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Den Hartog criterion (next) Retour

D(α) For Tacoma (H cross section)

D =
�SV

2
[cx(α) +

∂cz

∂α
(α)]

Den Hartog criterion : Zoom ↑ ;

D < 0 => unstable, D > 0 => stable.

Remark One should take into account the
structural damping.

cz

cx
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A military aircraft in our wind tunnel

The pitching movement

The pitching movement

The movement of a cross
section is represented by a
rotation around point O.

Apparent wind

The aerodynamic center is denoted
P ;

the distance between O and P is a ;

Va = Ve1 − α̇a[sin(α)e1 + cos(α)e2] ;

αa = arctan(tan(α)− aα̇
V cos(α)

) ;

R(α, α̇) = �SL||Va||2
2 cm0(αa).

The pitching model

J0α̈+ C(α− α0) = R(α, α̇),

α(0) = α̇(0) = 0.
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Scanlan criterion
Linearisation

Let us notice that :
∂αa

∂α̇
(α0) = −a cos(α0)

V
;

||Va||2=V 2(1 − 2
α̇a
V

sin(α) + (
α̇a
V

)2)�V 2(1 − 2
α̇a
V

sin(α0) . . . ;

cm0(αa) = cm0(α0) +
∂cm0

∂α
(α0)

∂αa

∂α̇
+ . . .

Linearized model around α0 et α(0) = α̇(0) = 0

J0α̈+ Dα̇+ [C − �SLV 2

2
∂cm0

∂α
(α0)](α− α0) =

�SLV 2

2
cm0(α0).

D = a
�SLV

2
[2cm0(α0) sin(α0) +

∂cm0

∂α
(α0) cos(α0)].

is the aerodynamical damping => Scanlan criterion :

If D < 0 the bridge is unstable and stable if D > 0.
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A military aircraft in our wind tunnel Rafale

Pitching coefficient cm0

Decrease of Cm0 about 280.

Damping curve D

The instability has been
checked in the tests (twice !).

An explanation

The canard behaves as a Venturi. But
it doesn’t work for an angle of attack
about 280. This implies a sudden
backward movement of the
aerodynamic center.

The pitching moment is therefore
quickly changing about 280
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Functions of the foil The article from OTUSA

The foil (L shape)

Two forces : the wind (propulsion)
and the water (lift, drag, anti-drift).

How the foil is moved

As on old aircrafts, with hydraulic !

One has to avoid the slamming
which is catatrophic. The foil has
several functions : lift, anti-drift and
control through the rake angle.

New Zealand 2017

The slamming !
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The mathematical model used

The basic ideas Zoom↓ The scheme in situ

2 DOF : pitch is γ, heave at O is z ; β is fixed, α is the control
(G is behind O if a > 0 and before if a < 0 ; the moment are computed at O.)

Mz̈−aM cos(γ)γ̈=−Mg+�Ss|Vas|2
2 czs((β+γ)a)+

�Sf |Vaf |2
2 czf ((α+γ)a),

−aM cos(γ)z̈+J0γ̈=−M0+
�SsL|Vas|2

2 cms((β+γ)a)+
�Sf L|Vaf |2

2 cmf ((α+γ)a)+
�
2[

Sf df sin(α+γ)|Vaf|2czf ((α+γ)a)−Ss(h cos(γ)−ds sin(γ))|Vas|2czs((β+γ)a)
]
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Apparent velocity of the rudder

Angles β and γ

Zoom↑

Velocity of point S
(z is the heaving of O)

Vs = (ż − γ̇(h cos(γ) − ds sin(γ))ez − γ̇(h sin(γ) + ds cos(γ))ex

Apparent velocity at S

Vas =(V+γ̇(h sin(γ)+ds cos(γ)))ex −(ż−γ̇(h cos(γ)−ds sin(γ)))ez

Modulus of the apparent velocity at S

|Vas|2 =(V+γ̇(h sin(γ)+ds cos(γ)))2+(ż−γ̇(h cos(γ)−ds sin(γ)))2

Apparent pitching angle at S

(β + γ)a = arcsin(
[Vas ∧ (cos(β + γ)ex − sin(β + γ)ez ].ey

|Vas|
)

OS = (h cos(γ)− ds sin(γ))ex − (h sin(γ) + ds cos(γ))ez

NB : The hydrodynamic center of the foil is assumed to be at S.
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Apparent velocity for the foil
Velocity and pitching
angle of the foil

Zoom ↑ h = a+b = |O′O|

Velocity of point F
(z is the heaving at O)

Vf = (ż + γ̇df sin(γ + α))ez − γ̇df cos(γ + α)ex

Apparent velocity at F

Vaf =(V+γ̇df cos(γ+α)))ex −(ż+γ̇(df sin(γ+α)))ez

Modulus of the apparent velocity at F

|Vaf |
2 =(V+γ̇df cos(γ+α))2+(ż+γ̇df sin(γ+α))2

Apparent pitching angle at F

(α + γ)a = arsin(
[Vaf ∧ (cos(α + γ)ex − sin(α + γ)ez ].ey

|Vaf |
)

OF = −df sin(α+ γ)ex − df cos(α+ γ)ez

NB : The hydrodynamic center is assumed to be at F .
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How to simplify

A (simple) computation enables to linearize around a given position :
γ = 0, β = β0, α = α0 (δ = α− α0) is the control angle (the rake) :

Mz̈ − aM γ̈ = F1 + T1γ + C11ż + C12γ̇ + B1δ + E1δ̇,

−aMz̈ + J0γ̈ = F2 + T2γ + C21ż + C22γ̇ + B2δ + E2δ̇.

with : Expressions of Cij Expressions of Bi et Ei Expressions of Ri = Ti/(�V2)

F1 = −Mg +
�V2

2 (Ssczs (β0) + Sf czf (α0)), B1 =
�Sf

2
∂(|Vaf |2czf ((α+γ)a))

∂γ

F2 = −M0 +
�LV2

2 (Sscms (β0) + Sf cmf (α0)), B2 =
�Sf

2 L
∂(|Vaf |2cmf ((α+γ)a))

∂γ
,

C11 =
�
2

∂(Ss|Vas|2czs ((β+γ)a)+Sf |Vaf |2czf ((α+γ)a))
∂ż , E1 =

�Sf
2

∂(|Vaf |2czf ((α+γ)a))
∂γ̇

C12 =
�
2

∂(Ss|Vas|2czs ((β+γ)a)+Sf |Vaf |2czf ((α+γ)a))
∂γ̇

, E2 =
�Sf

2
∂(|Vaf |2cmf ((α+γ)a))

∂γ̇

C21 =
�
2

∂(SsL|Vas|2cms ((β+γ)a)+Sf L|Vaf |2cmf ((α+γ)a))
∂ż , T1 as C12 but derivated /γ,

C22 =
�
2

∂(SsL|Vas|2cms ((β+γ)a)+Sf L|Vaf |2cmf ((α+γ)a))
∂γ̇

, T2 as C22 but derivated /γ,

these derivatives are computed for : z = ż = γ = γ̇ = 0, α = α0 ; β = β0, being fixed.
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The equilibrium configuration

First of all, let us define (β0, α0) which is the equilibrium position
(γ0 = z0 = 0) for a velocity V by : (M0 is the external moment at O) :

Ssczs(β0)+Sf czf (α0) =
2Mg
�V 2 ,

−Ssh
L

czs(β0)+
Sf df sin(α0)

L
czf (α0)+Sscms(β0)+Sf cmf (α0)=

2M0

�LV 2 .

Then we linearize the model around α = α0, γ = 0 et γ̇ = ż = 0. Let us set :
δ = α− α0 which is the control variable (the rake). Let us point out that the
control δ is assumed to be precribed once it has been computed, which
implies real time implementation.

The control variable δ could be (and was) adjusted through hydraulic
cylinders driven from the steering wheel of the helmsman.
See J. Spithill in 2013 at SF
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Stability : episode 1

Let us first neglect the apparent velocity (static stability). The discussion rests
on the real parts of the imaginary part of μ =

√
λ solution of :

det

∣∣∣∣ −μ2M, μ2aM − �V2R1

μ2aM, −μ2J0 − �V2R2

∣∣∣∣ = λ(λJG + �V 2M(R2 + aR1)) = 0.

The value λ = 0 corresponds to a heaving movement which is controlled
directly by the boat velocity V .

The other one, say : λ = −V
√

�M
√

R2+aR1
JG

=> μ = ±i
√
−λ- leads to

stability if : R2 + aR1 > 0. Otherwise an instability occurs. As a is small, R2

has (essentially) the sign of ∂cmf
∂α

(α0)− ∂cms
∂α

(β0).
In conclusion of this first analysis one can say that the angle α0 should
equilibrate the angle β0 through the derivatives of the pitching moments. It is
worth to notice that (approximately) this choice doesn’t depend on the velocity
V of the boat but only on the derivatives of the hydrodynamic coefficients .
Few results :
Gravity center near the foil a = .2h = 5 m/s ... backwards a = .8h = 5 m/s
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Stability : episode 2

We are now concerned by the dynamic stability. Hence we take into account
the damping matrix −C (If it has eigenvalue with negative real part one can
have a stall flutter). The new equation to study for the stability is :

det

∣∣∣∣∣∣∣
−μ2M − iμC11 μ2aM − iμC12 − �V2R1

μ2aM − iμC21 −μ2J0 − iμC22 − �V2R2

∣∣∣∣∣∣∣
=

μ4JG + iμ3(
J0

M
C11 + C22 + a(C12 + C21)) + μ

2(�V2(R2 + aR1) −
C11C22 − C12C21

M
)

+iμ
�V2

M
(R2C11 − R1C21) = 0

One solution is still μ = 0, but there are three other solutions. Due to the
complexity of the expressions, we use a computational method. Let us see
few results connected to the dynamic stability discussion :

Gravity center near the foil a = .2 h = 5 ... backwards a = 1 h = 5

On the stability of racing sailing boats with foils, Chin. Ann. Math., 2018
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Stabilisation and control

∀ε > 0, let us introduce a control criterion :

Jε(δ) =
1
2
||X (T )||2 + 1

2
||Ẋ (T )||2 + ε

2

∫ T

0
[a0δ

2(s) + b0δ̇
2(s)]ds,

where :

X =

⎛
⎝ z

γ

⎞
⎠ , X0 =

⎛
⎝ δz0

δγ0

⎞
⎠ , X1 =

⎛
⎝ δz1

δγ1

⎞
⎠

and X is solution of (X0 and X1 are initial perturbations due for instance to
the waves ; the matrices M,K, C and the vectors B, E are self explanatory :

MẌ − CẊ +KX = Bδ + E δ̇, X (0) = X0, Ẋ (0) = X1.

The optimal control problem consists in finding δ ∈ H1
0 (]0,T [) which

minimizes Jε for a given initial perturbation.
On the Controllability of Racing Sailing Boats with Foils, AIMS’s journ. 2018
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Exact control, in fact phase control (� Tychonov)

Let us define the control δ0 ∈ H1
0 (]0,T [) by :

a0δ
0 − b0δ̈

0 = (E .Ṗ1)2 − (B.P1)2, MP̈1 + tCṖ1 + tKP1 = 0,

P1(0) = Φ0, Ṗ1(0) = Φ1, Φ = (Φ0,Φ1) ∈ R
2,

where :
∀δΦ = (δΦ0, δΦ1) ∈ R

2, Λ(Φ, δΦ) = L(δΦ).

and the bilinear form Λ and linear L defined by :

Λ(Φ, δΦ)= 2
T

∑
n≥1

∫ T

0
ξ(s) sin(

nπs
T

)ds
∫ T

0
υ(s) sin(

nπs
T

)ds

a0 + b0
n2π2

T 2

L(δΦ) = (MẊ (0)− CX (0), δΦ0)2 − (MX (0), δΦ1)2

with the notations (controllability is equivalent to : P0 = 0) :{
MQ̈ + tCQ̇ + tKQ = 0, Q(0) = δΦ0, Q̇(0) = δΦ1,

ξ(s) = (B.P1)2(s)−(E .Ṗ1)2(s), υ(s) = (B.Q)2(s)−(E .Q̇)2(s),
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Remark concerning controllability

It seems a good idea to restrict the control to the term : Bδ if E est negligible
because the model is simplier. But −B also a part of the second column of
the stiffnes matrix K (the first one is zero). Let us set : K2 = −B − G.

The controllability is not so obvious Proof in the general case ; . Let us consider the
case : −C (damping matrix) is negligible (no apparent flow). The control
criterion leads to : Proof if C = 0

(M−1 tKD.B)2 = −(M−1

⎛
⎝ (G.D)2

0

⎞
⎠ .B)2 �= 0 where (D.B)2 = 0.

or else : (G.D)2 �= 0 and (

⎛
⎝ J0

aM

⎞
⎠ .B)2 �= 0.

In fact it seems more securising to use the term E δ̇. Furthermore, it enables
one to avoid stiff transition on the rake by the possibility to prescribe
δ(0) = δ(T ) = 0.
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Numerical tests

In the following we give few results obtained with an imaginary boat. An exact
control in H1

0 (]0,T [) has been used. The velocity of the boat is V (10
m/s and 20 m/s). We introduced an initial perturbation in each case.

Zoom1 Zoom2
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Bounded control

In this simulation we applied a bound on the control. Clearly the time
necessary is longer, but the results are more physically acceptable.

Zoom1 Zoom2
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Damping feedback

We use a bang-bang control law based on the sign of the pitching velocity the
control is δ = −sign(γ̇)δmax . The results are more realistic than in the former
cae, but the control is a little bit less efficient. The boat is the same, the
velocities are identical and the bound of the control δmax is also the same, but
decreasing as Oracle did in 2013 : Oracle 2013 Zoom1 Zoom2 AC-45
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Conclusions for the flying sailing boats

A simple equation can be used for a first modelling of the boat
behaviour ;

The corner point is to generate polar curves for many configurations in
quasi-static ;

The dymamical model is built using the apparent velocity at the
aero-hydro-dynamic- center of each structural component (sail, foil,
rudder) ;

The automatic control is well define from the linearized model as soon it
is stable and preferably using both the rake and its time derivative ;

For more complex movement of the foil (inverse T shape, wait a minute
please...) Projet New Zealand 2021 AC 2021... Controls...

Thank you very much for your attention
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Let us consider the following equation:

MẌ + CẊ + KX = F (X , Ẋ ), X (0) = X0, Ẋ (0) = X1,X (t) ∈ R
N

In this lecture we assume that:

F ∈ C1(R2N ;RN).

Theorem (Cartan existence and uniqueness of a solution)

The previous equation has a unique solution for any finite time t (this
is a basic property in the phase diagram analysis).

Corollary (An simple but important consequence)

The trajectory in the space (X (t), Ẋ (t)) ∈ R
2N can’t have a double

point for a finite time.
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Cartan’s Theorem implies
practical consequences in order to
localize the trajectories.

No double points on a
trajectory;

If ẋ > 0 => x is increasing;

One can have an asymptotic
behaviour above the axis x ;
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Definition (Limit cycle of oscillations MẌ + CẊ + KX = F (X , Ẋ ))

Let X (t), t > 0 be a solution of the previous (without initial
conditions): X (t), t > 0 is limit cycle of oscillations if ∃T ∈ R

+∗ (the
smallest value of T is the period), such that :

∀t ∈ R
+, X (t + T ) = X (t).

In the space R
2N t > 0 → (X (t), Ẋ (t)) is a closed curve the described

by the parameter t ∈ [0,T [. Furthermore if :
∃t0 ∈]0,∞] such that: Ẋ (t0) = Ẍ (t0) = 0, the limit cycle (X (t), t > t0)
is an equilibrium point (not necessarily stable) solution of:

KX = F (X , 0).

Resonance Visu Prog

With polar coordinates (N = 1):
(x , ẋ) → (r , ϕ)
ṙ = ar − br 3, ϕ̇ = ω + cr 2

Van der Pol Visu Prog.

N = 1, ẍ+2ωεẋ(x2−1)+ω2x = 0
(0, 0) is an instable equilibrium.
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Let us consider the equation (there can be a damping included in f
and N = 1):

mẍ + kx = f (x , ẋ), x(0) = x0, ẋ(0) = x1, x(t) ∈ R
N .

Let us assume that x(t), t > 0 is a limit cycle of oscillations.
The curve representing (x(t), ẋ(t)), t > 0 is the boundary in the plane
x1 = x , x2 = ẋ , of a connected open set D with boundary∂D and the
unit outwards normal to D along ∂D is:

ν = (ν1, ν2) =
1√

ẋ2 + ẍ2
(−ẍ , ẋ), one has ∂D : ds =

√
ẋ2 + ẍ2dt .

Let us set P = (0, f (x , ẋ)) et on a sur ∂D:

(P, ν)ds = f (x , ẋ)ẋdt = (mẍ + kx)ẋdt .

From Stokes’s formula Proof :∫
D
div(P)dxdẋ =

∫
D

∂f
∂ẋ

(x , ẋ)dxdẋ =

∫
∂D

f (x , ẋ)ν2ds =

∫ T

0
(mẍ + kx)ẋdt=0.
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Multipy by ẋ , then by
αx + βẋ
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We introduce two sets (let us recall that N = 1):

P+ = {(x , ẋ)| ∂f
∂ẋ

(x , ẋ) > 0},P− = {(x , ẋ)| ∂f
∂ẋ

(x , ẋ) < 0}.

Let x(t), t > 0 a limit cycle of oscillations and let D the open set
delimited by this cycle in the phase diagram (x , ẋ).

Lemma ( Poincaré-Bendixson’s criterion)

The open set D can’t be included neither in P+ nor P−. Be careful:
the criterion involves the open set D, not its boundary ∂D.
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x(t), t > 0 is still a limit cyle of oscillations ∂D which delimitates the
open set D; (N = 1). Let us notice that: Proof :

0 =

∫ T

0
(mẍ + kx)ẋdt=

∫ T

0
f (x , ẋ)ẋdt=

∫ T

0

f (x , ẋ)− f (x , 0)
ẋ

ẋ2dt .

Let us introduce two sets:

E+ = {(x , ẋ)| f (x , ẋ)− f (x , 0)
ẋ

> 0},E− = {(x , ẋ)| f (x , ẋ)− f (x , 0)
ẋ

< 0}

Lemma (The energy criterion (PhD-MTR))

The trajectory ∂D solution of the equation:

mẍ + kx = f (x , ẋ),

can’t be included neither in E+ nor E−. This is why one could say that
the energy criterion is more accurate tha the Poincaré-Bendixson’s
one.
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Definition (Invariant set by an ODE)

Let I ⊂ R
2 and (x0, x1) ∈ I. Let us denote by x(t), t > 0 the solution

of:
mẍ + kx = f (x , ẋ), x(0) = x0, ẋ(0) = x1.

If ∀(x0, x1) ∈ I => ∀t > 0, (x(t), ẋ(t)) ∈ I then I is an invariant set of
the previous ODE.

Theorem (Existence of a limit cycle of oscillations)

Let us assume that there exists an invariant set I �= ∅ for the ODE
which is compact (closed and bounded). Then one has two
possibilties: 1) ∃ a limit cycle in I, 2) ∃ an equilibrium point on the axis
x which can be reached for t → ∞
(3 vidéos) Proof V1 Proof V2 Preuve V3

even if it is quite simple, this proof requires some mathematical
precisions
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Let us discuss few examples for the following ODE:
f (x , ẋ) = p(x) + ẋq(x), P,Q being primitives of p, q. One has: Proof

d

dt
(m

ẋ2

2
+ k

x2

2
− P) = ẋ2q(x),

d

dt
(m

ẋ2

2
+ k

x2

2
− P − ẋQ +

Q2

2m
) =

Q

m
(kx − p),

R− = {(x, ẋ)|q(x) ≤ 0} and S− = {(x, ẋ)|Q(kx − p) ≤ 0}

Lemma ( see the video for other examples (Other examples) )

Let ∃c0 > 0, c1 > 0 s.t. the curves of the phase plan:

H = {(x, ẋ)|(m
ẋ2

2
+ k

x2

2
− P = c0}

J = {(x, ẋ)|m
ẋ2

2
+ k

x2

2
− P − ẋQ +

Q2

2m
= c1}.

are closed and included in R− (resp. S−). Then the set delimited by H
(resp. J) is an invariant set for the ODE . . .
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Let us set (Van der Pol type): Trajectory

q(x) = 1−x2 => Q(x) = x − x3

3
+c et p(x) = 2k => P(x) = 2kx −2k

One obtains for R− (left) and the trajectory (right):

We set (Van der Pol): Building of J

q(x) = 1 − x2 => Q(x) = x − x3

3
+ c0 et p(x) = 0 => P(x) = 0

One obtains S− (left) and trajectory J (right):
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Trajectory for N = 3 for an ODE.

Answer to the questions and check
your score.

Run the qcm
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Lecture 3: How to build the limit cycle

Limit cycles of oscillation are part of the nature
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First change of variables
The voice is driven from the bottom bar.

For sake of simplicity we restrict the description with the following
simplified EDO :

Find x(t) solution of :
ẍ + ω2x = f (x , ẋ), x(0) = x0, ẋ(0) = x2.

In the neighbourhood of (0, 0) :

g(x , ẋ) = f (x , ẋ)− f (0, 0)− x
∂f
∂x

(0, 0)− ẋ
∂f
∂ẋ

(0, 0)

=> |g(x , ẋ)| = O(|x |2 + |ẋ |2),

and up to a translation with respect to x , one can assume that
f (0, 0) = 0. The model becomes :

ẍ − ∂f
∂ẋ

(0, 0)ẋ + (ω2 − ∂f
∂x

(0, 0))x = g(x , ẋ).

We consider the case where the linearized model is unstable.
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Let us set :

X=

(
x
ẋ

)
, A=

(
0 1

−(ω2 − ∂f
∂x (0, 0)) − ∂f

∂ẋ (0, 0)

)
, B=

(
0
g(x , ẋ)

)
.

This model is equivalent to the following one :

dX
dt

= AX + B(X ), X (0) = X0 =

(
x0

x1

)
.

The eigenvalues λ of A are solutions of :

λ2 − λ
∂f
∂ẋ

(0, 0) + (ω2 − ∂f
∂x

(0, 0)) = 0.

They are assumed to be as follows :

λ = a ± ib avec a ≥ 0 et b �= 0.

The instability considered corresponds to a > 0 but also : a << 1
which is the characteristic of a stall flutter.
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We introduce the first change of variables :

X =

(
1 1
λ λ

)
Y = DY ,

which leads to the model where G(Y ) = g(x , ẋ) :

Ẏ =

(
λ 0
0 λ

)
Y +

i
2b

(
G(Y )

−G(Y )

)
.

It is worth noting that the second equation is the complex conjugate of
the first one because G(Y ) ∈ R.

Therefore we focus on the first one.
Let us point out that :

G2(y1, y1) = G(Y )
and

|G2(y1, y1)| = O(|y1|2 + |y1|2).

ẏ1 = λy1 +
i

2b
G2(y1, y1)
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One can check that we can write :

G2(y1, y1) = d11y2
1 + d12y1y1 + d22y1

2 + G3(y1, y1),

avec : |G3(y1, y1)| = O(|y1|3 + |y1|2).

We introduce a change of variables in the vicinity of the origin in C :

y1 = z + p(z, z) où p ∈ P2 = {αz2 + βzz + γz2}.
De ẏ1 = (1 + ∂p

∂z )ż + ∂p
∂z ż, et ẏ1 = λy1 + O(|y1|2),

and from a simple computation we deduce that : Proof

ż = λz + λp − λ ∂p
∂z z − λ ∂p

∂z z + d11z2 + d12zz + d22z2 + H3(z, z)

avec H3(z, z) = O(|z|3)

The challenge is to find the polynomial p in order to destroy the
second order terms.
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Let us notice that :

L(p) = λp − λ
∂P
∂z

z − λ
∂p
∂z

z

is a linear mapping from P2 into itself. Its matrix representation in the
basis : {z2, zz, z2} is :

L =

⎛
⎜⎜⎜⎜⎝

−λ 0 0

0 −λ 0

0 0 λ− 2λ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−a − ib 0 0

0 −a + ib 0

0 0 −a + 2ib

⎞
⎟⎟⎟⎟⎠ .

Hence L is a one to one mapping in a vicinity of the origin in C as far a
none of the diagonal terms are small. This is the case because b �= 0.

Therefore all the terms of order 2 can be cancelled from this non
linear change of variables.
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Let us use again the same strategy as before but that time in order to
try to cancel terms of order 3. Hence we set :

z = ξ + q(ξ, ξ) où q ∈ P3.

The same operator L appears but that time from P3 into itself. Its
matrix in the basis {ξ3, ξ2ξ, ξξ

2
, ξ

3} est :

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2(a− ib) 0 0 0

0 −2a 0 0

0 0 −2(a − ib) 0

0 0 0 −2a + 4ib

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One can see that the term ξ2ξ, which is an eigenvector of L is
(almost) in the kernel because a is small. The other terms can be
eliminated, ensuring that we remain in a neighbourhood of the origin.
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Expression of the resonant term
The voice is driven from the bottom bar.

The equation obtained after the three changes of variables is ; (pay
attention to the fact that we are working in C !) :

ξ̇ = λξ + hξ2ξ + O4(|ξ|4).

Setting : ξ = reiϕ et h = hr + ihi :

ṙ = ar + hr r 3 et ϕ̇ = b + hi r 2.

A calculus leads to the solution (neglecting terms of order 4) : Calculus

• Si hr < 0 :

⎧⎨
⎩ limt→∞= rlim =

√
a

−hr

limt→∞ ϕ̇=b + hi r 2
lim

• si hr ≥ 0 : limt→∞ r(t)=∞,

r(t) = ar0eat/2√
a+hr r2

0 (1−eat )
, ϕ = ϕ0 + bt − ahi

hr
Log(1 +

hr r 2
0

a
(1 − eat)).

ϕ̇lim is the phase velocity and rlim is the radius of the limit cycle.
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Signature of the resonant term
The voice is driven from the bottom bar.

Remark (How to make use of the previous result)

In case of a limit cycle (hr < 0) it is obtained as an asymptotic curve
excepted if the initial condition is on this cycle. One gets the
convergence of the trajectory for the full non linear model to the limit
cycle as soon as the initial condition is in a neighbourhood of the
origin.
At the opposite (hr > 0) its is necesary to go further in the algorithm
untill one finds a resonant term which can (may be) stabilize the
solution.

Remark (Algorithm)

Due to the enormous complexity of the computations in the changes
of variables, it is highly recommended to use symbolic computation
softwares. It is worth to notice that in the example considered there is
no resonant term at order 4 but only at the order 5.
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Signature of the resonant term
The voice is driven from the bottom bar.

The solution found for hr < 0 can be written :

ξlim(t) = rlimeiϕ̇limt .

If one uses a Fourier transform there is a resonance for ωr = ϕ̇lim.
Due to the third change of variables which is : z = ξ + q(ξ, ξ) one can
claim that the solution in z will contain resonances for :

ω ∈ {ωr , 3ωr}.

Then from y = z + p(z, z) one deduces that the spectrum of y
contains resonances for :

ω ∈ {ωr , 2ωr , 3ωr , 4ωr , 6ωr}.

A nice method for counting the harmonics is to use a Nyquist diagram
in time. An example

The frequency gap observed for 5ωr is a caracteristic of the resonant
term of order 3. This will be discussed in the example of a military
aircraft in the following.
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With symbolic computation...
The voice is driven from the bottom bar.

Let us consider the simplified case :

f (x , ẋ) = A+Bẋ +Cx +Dx2 +Exẋ +Fẋ2 +Gx3 +Hx2ẋ + Ixẋ2 + Jẋ3.

The first change of variables (linear) enables one to obtain an
equation as : ( a

2 is assumed to be small compared to
√
ω2 − C) :

ẏ = λy + g(y , y), with λ = a + ib = a ± i
√

(ω2 − C)2 − a2

4

solution of λ2 − Bλ+ (ω2 − C) = 0

and y = 1
2 (x + i

b (ax − ẋ)) ou x = y + y , ẋ = λy − λy .

We apply the algorithm to :

ẏ = λy + g(y , y),

and we denote by L2 (respectivelyL3) the matrix which appears in the
two non linear changes of variables.
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Organisation of the program
The voice is driven from the bottom bar.

An algorithm for the computation of terms of order 3 in the normal
form method : A useful reference...

g(y , y) = Dy2 + Eyy + Fy2 + Gy3 + Hy2y + Iy y2 + J y3 + . . .

↓
Computation of p as a function of fonction D,E,F

↓
Computation of the terms of order 3

↓
Computation of the coefficient of ξ2ξ

↓
Expression of the limit cycle of oscillation in ξ and then in x
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Questionnaire d’assimilation
The voice is driven from the bottom bar.

Vladimir Arnold one of the pilar of
dynamical systems.

Answer to the questions and check
your score.

Run the qcm

Evitez de regarder les réponses trop vite !
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An example
The voice is driven from the bottom bar.

Lecture 4: Study of a reduced model in a wind tunnel
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The sections
The voice is driven from the bottom bar.

PLAN of lecture 4

1 The wind tunnel used
Energetical principle
The tests
The measures

2 The observations
What has been seen
The FFT of the signals

3 A simple model
The non linear analysis
Direct simulation of the 1 DOF model
Comparison computation and experimental

4 Conclusion

5 QCM
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Energetical principle
The voice is driven from the bottom bar.

The wind tunnel used
Zoom1 ↓ Zoom2 ↓ ↓

Zoom ↑

The tests were performed in 1990 by
the Scientific computation team at
CNAM and financed by the DGA
Ph. D. and M. T. Ribereau [1996], Non linear dynamics of test

models in wind tunnels, in Eur. J. Mech. A/Solids,15, n◦1, p.

91-136.
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The tests
The voice is driven from the bottom bar.

Supporting system Zoom1 Zoom2

Measures and their treatment

The two gadge bridges are
equiped by electric resistors and
set in Wheaston bridges which
enable to measure the six
components of the forces.

The frequency used in the
sampling is larger than 256 Hz
and a Hanning filtering is applied.
Hence the results are reliable up
to 130 Hz

The curves obtained are
smoothed using polynomial of
degree 120.
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The measures
The voice is driven from the bottom bar.

Mesures de cx , cz , cm . . . Zoom Measure of cz Zoom

Pitching coefficient cm0 and position of the aerodynamical
center. Zoom1 Zoom2
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What has been seen
The voice is driven from the bottom bar.

The aerodynamical center is perfectly defined in 2D. It is the point
where the resultant aerodynamical forces are applied. Its distance
from O is a.It is defined by:

acz(α) + Lcm0(α) = 0

The smoothing is necessary because it is required to take third order
derivatives of the aerodynamical coefficients. In fact only for cm0 in our
case.

First conclusions

The measures reported on the previous screen shows that the
pitching moment increases a lot before an angle of attack close to 280.
The heaving movement seems to be a single frequency it is not the
case for the pitching angle. This proves clearly that the movement
can’t be modelled by a linear system with one degree of freedom.
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FFT of the measures
The voice is driven from the bottom bar.

FFT de cx Zoom FFT de cz Zoom

Comments

We observe that the energy is discharged on the fundamental
eigenmode of the pendulum system (20 Hz) but also on the
harmonics 2, 3, 4 et 6. It is worth to notice that there is no energy on
the fifth harmonic. Hence the analysis given in the previous lecture
enables one to confirm the existence of a resonant term of order 3
and the explanation of the limit cycle given here using the the
apparent wind velocity.
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The non linear analysis
The voice is driven from the bottom bar.

Notations:

J0 Inertia around point o;

M Mass of the system;

C Bending stiffness of the support;

a Distance between o and the
aerodynamic center.

αa Apparent pitching angle;

Va Apparent velocity;

�SL Mass density times the reference
volume.

A simple non linear model with 1 DOF

J0α̈+ C(α− α0) =
�SL|Va|2

2 cm0(αa)

α(0) = α0, α̇(0) = α1.

�SL|Va|2
2 cm0(αa) =

�SL|V |2
2 cm0(α0)− a�SLV

2

(2 sin(α0)cm0(α0) +
∂cm0
∂α

(α0) cos(α0))α̇
+ . . .
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Direct simulation of the 1 DOF model
The voice is driven from the bottom bar.

A simple Matlab code has been used with a time step integration
scheme. The scheme is: Simul. (In this presentation we didn’t
use the exact data from the military aircraft)

αn+1 − 2αn + αn−1

Δt2 + c(αn − α0) =
�SL|Va|2

2
cm0(αa).

In a second step we have built the normal form of the model
using Mathematica and around 28o.
We obtained a resonant term of order 3.
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Comparison computation and experimental
The voice is driven from the bottom bar.

Aérodynamical damping. Limit cycle and the energy criterion

The negative damping appears for angle of attack α between 28o and
34o. This is exactly what has been observed in the wind tunnel tests.
Furthermore the shape and amplitude of the limit cycle is the one
observed. Finally the FFT of the measures shows the gap of energy
on the fifth harmonic (see Lecture 3).
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Conclusion
The voice is driven from the bottom bar.

A simple one DOF model enables to reproduce the phenomenon

observed in the wind tunnel with a surprising accuracy. In fact

we performed three tests: the two first in 1989 at M = .7 led to

the breakdown of the reduced model after 60 sec. The third one

was performed in 1991 at a reduced velocity (M = .5) and

stopped as soon as the limit cycle was observed (30 sec.).

But a remaining question was the understanding of the sudden

decrease of the pitching coefficient involving the stall flutter

phenomenon which is not really seen on the lift coefficient. In

fact it appeared that the uncontrolled Canard works as Venturi

(jib in sailing). It improves the local lift on the front of the main

(delta) wing and thus the pitching moment. But at 28o the

Venturi is suddenly closed and the pitching moment decreases.

Hence the plane moves down, the Venturi opens again and so

on inducing the limit cycle of oscillation and the breakdown of

the reduced model.
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QCM
The voice is driven from the bottom bar.

Reduced model of a military
aircraft in our wind tunnel (≤
65m/s) S10 du CNAM.

Answer to the questions and check
your score.

Run the qcm

Do not look at the answer too quickly!
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