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Introduction

Submarine avalanches may be described by a two-layer model of Savage-Hutter type. The
modelling of both, the fluid and the granular, has usually been developed using only one
coordinate system (Cartesian or local coordinates), without considering the physical
requirements of the typical flow occurring in each layer.
We present a two-layer model of Savage-Hutter type to simulate submarine granular
avalanches using a depth-averaging procedure of the 2D momentum and mass equations.
Our approach considers two different coordinate systems: the fluid is described in
Cartesian coordinates whereas local coordinates are introduced for the granular.

The proposed model

Systems of coordinates involved in the model

�x = (x, z): Cartesian coordinates;
�X = (X,Z): Local coordinates;
θ: inclination of the reference plane (r.p.);

�x = (X− Z sin θ, b(X) + Z cos θ).

Modelling framework

h1(x): thickness of the fluid layer;
H2(X): thickness of the granular
layer (perpendicular to the r.p.);
u1(x): velocity of the fluid (hori-
zontal);
U2(X): velocity of the grain (paral-
lel to the r.p.);
b̃(X): distance (with sign) of the
bottom level to the r.p.;

Relation between the profiles
sections: x = X− (b̃ +H2) sin θ.

� Governing equations: 2D incompressible Euler equations.
� Coulomb friction laws are considered at the fixed bottom.
� Friction between layers defined to obtain energy balance.

Resulting model (I)
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< 1;

Pi = b + (b̃ + H2) cos θ +
ρ2

ρi

rh1;

F: friction term between layers;

C = g · sgn(U2)H2 cos θ(1− r)tan δ0 (δ0: Coulomb friction angle).
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Resulting model (II)

Change of variables for
equations of layer 1 (fluid)

(X, t) �−→ (x, t) =
(
X− (

b̃(X) + H2(X)
)
sin θ, t

)
J := det(∇(X,t)(x, t)) = 1− ∂X(b̃ + H2) sin θ;

H1(X) := h1(x); U1(X) := u1(x).⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
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(
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(
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)
+ gH1∂X(P1) = −J

F
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;

∂tH2 + cos θ∂X(H2U2) = 0;

∂t(H2U2) + cos θ∂X(H2U
2
2) + g cos θH2∂X(P2) =

F
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Pi = b + (b̃ + H2) cos θ +
ρ2

ρi

rH1;

F := ρ1λ(JU1 cos θ − U2) ⇒ Model with dissipative energy balance

Numerical results

TEST 1: Comparison with experimental data

Goal: to show the influence of θ in the numerical solution (steady state).

α = 45◦, hw0=0.28m, x0 = 0.15m.

TEST 2: Influence of the slope in the reference plane

Goal: to show the influence of θ in the numerical solution (evolutive state).

α = 45◦, hw0=1m, x0 = 0.6m

Steady state

t = 0.3s

Conclusions

� Remarkable influence of the slope θ of the r.p. in the numerical solutions.
� The best choice: to consider the model above with an intermediate value of θ between

0◦ and the maximum inclination of the bottom.


