

XVIII SPANISH-FRENCH SCHOOL JACQUES-LOUIS LIONS ABOUT NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING Las Palmas de Gran Canaria, 25-29 June 2018

Delay control of reaction-diffusion equations-12

Eduardo Casas¹, Mariano Mateos² and Fredi Tröltzsch³

¹Dpto. de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, SPAIN ²Departamento de Matemáticas, Universidad de Oviedo, Gijón, SPAIN ³Institut für Mathematik, Technische Universität Berlin, GERMANY

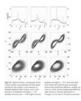
Delay reaction-diffusion equations with kernel $u \in \mathcal{M}[0,T]$

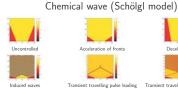
$$\begin{cases} \partial_t y - \Delta y + R(y) = \int_{[0,T]} y(x,t-s) \, \mathrm{d} u(s) & \text{in } Q = \Omega \times (0,T), \\ \partial_n y = 0 & \text{on } \mathbf{\Sigma} = \mathbf{\Gamma} \times (0,T), \\ y(x,t) = y_0(x,t) & \text{in } Q^- = \Omega \times [-T,0], \end{cases}$$

- lacktriangle Pyragas feedback control stabilization: $\sum \kappa_i(y(x,t-s_i)-y(x,t))$
- Nonlocal control: $\int_0^T y(x, t s)g(s)ds$
- Applications: Laser control, Chemical waves, Parkinson disease

Physics literature: Tune parameters and solve direct problem

Pyragas control of chaos





Analysis of the problem: State equation

- $ightharpoonup orall u \in \mathcal{M}[0,T] \Rightarrow \exists$ unique $y_u \in Y = L^2(0,T;H^1(\Omega)) \cap C(ar{Q})$
- ▶ If $y_0(\cdot,0) \in H^1(\Omega)$ and Ω is convex then $y_u \in H^{2,1}(Q)$
- ▶ If $u_k \stackrel{*}{\rightharpoonup} \bar{u}$ in $\mathcal{M}[0, T]$; then $y_k \to \bar{y}$ in Y. (\Rightarrow existence of optimal solution) MEASURE CONTROL

 - ▶ $u \in \mathcal{M}[0, T] \mapsto y_u \in Y$ is C^1 ▶ $(s, \kappa) \in \mathcal{C} \mapsto y_{(s,\kappa)} \in Y$ is C^0
 - Apply implicit function theorem.
 - Proof technique similar to other control problems.
- ► We have partial derivatives. Difficult pass to the limit: use results about average continuity of Nečas 1967.

Discretization issues

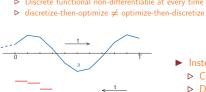
MEASURE CONTROL

Combination of Dirac measures centered on the time nodes to discretize the measure. (We prove weak* convergence in $\mathcal{M}[0, T]$, the best possible in this case!)

- lacktriangle Write the subgradient condition $ar{\lambda} \in \partial i(\bar{u})$ using a semismooth function and solve the optimality system using a semismooth Newton method.
- ▶ Use Tykhonov regularization and a continuation technique.
- Solve delay PDEs: discontinuous elements in time and continuous elements in space: dG(0)cG(1)discretization

OPTIMAL DELAY

- dG(0) (time) leads to:
 - Discrete functional non-differentiable at every time node.



- Instead use Petrov-Galerkin in time
- ▶ Continuous elements for the state
- Discontinuous for adjoint state

Control problems: look for u to approach target y_d

$$F(y) = 0.5||y - y_d||_{L^2(Q)}^2$$

MEASURE CONTROL

$$J_1(u) = F(y_u) + \nu j(u)$$

- ► Bilinear control
- Acting as measure kernel
- Non differentiable convex term $j(u) = ||u||_{\mathcal{M}[0,T]}$
- Promotes sparsity: usually the optimal $ar{u}$ is a combination of Dirac measures

OPTIMAL DELAY

Fix
$$m \in \mathbb{N}$$
.
 $C = \{(s, \kappa) \in \subset \mathbb{R}^{2m}: 0 < s_i \le b < T\}$

$$u(s,\kappa) = \sum_{i=1}^{m} \kappa_i \left(\delta_{s_i} - \delta_0\right)$$

- ► Better not treat as subcase:
 - $ightharpoonup U_{ad}$ would not be convex
- $hd s\mapsto \delta_s$ not differentiable
- ► Change to finite-dimensional optimization $J_2(s,\kappa) = F(y_{u(s,\kappa)}) + \frac{\nu}{2}|\kappa|^2$
- ▶ Both problems have at least a global solution.

Analysis of the control problem

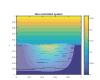
$$\begin{cases} -\partial_t \varphi - \Delta \varphi + R'(y_u)\varphi = \int_{[0,T]} \varphi(x,t+s) \, \mathrm{d}u(s) + y_u - y_d & \text{in } Q \\ \partial_n \varphi(x,t) = 0 & \text{on } \Sigma \\ \varphi(x,t) = 0 & \text{if } t \geq 1 \end{cases}$$

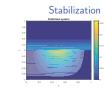
$$\partial_u F(y_u)(s) = \int_Q \varphi(x,t) y(x,t-s) \, \mathrm{d}x \, \mathrm{d}t \quad \forall s \in [0,T]$$

Optimality condition: \exists a subgradient $\bar{\lambda} \in j(\bar{u})$ such that $\partial_u F(y_{\bar{u}}) + \nu \bar{\lambda} = 0$ **OPTIMAL DELAY**

$$\partial_{s_i} F(y_{u(s,\kappa)}) = - \kappa_i \int_Q \varphi(x,t) \partial_t y(x,t-s_i) dx dt, \ \partial_{\kappa_i} F(y_{u(s,\kappa)}) = + \kappa_i \int_Q \varphi(x,t) (y(x,t-s_i) - y(x,t)) dx dt$$

Examples: $R(y) = (y - y_{\text{metastable}})(y - y_{\text{unstable}})(y - y_{\text{stable}})$

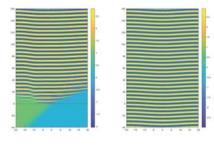




- ▶ Lead the system to an unstable equilibrium
- Optimal control of the form

Leading a chemical wave to a prescribed target pattern

- ► Allow a time shift in the target
- Use m = 5 Pyragas controls.



Optimal state (left) and shifted target (right)

Acknowledgements

The first two authors were partially supported by Spanish Ministerio de Economía y Competitividad under research projects MTM2014-57531-P and MTM2017-83185-P The third author was supported by the collaborative research center SFB 910, TU Berlin, project B6.

References

Casas, Mateos, Tröltzsch, Measure control of a semilinear parabolic equation with a nonlocal time delay, arXiv 1805.00689 (2018)