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Introduction
Fire-spotting is a harmful phenomenon that accelerates the rate of the spread of fire by
producing new independent ignitions by burning embers. It is a multi-scale and a
multi-physics phenomena, and the models that try to predict it depends on a wide range
of parameters subject to lack of knowledge and/or randomness. In this work we shall
� Perfom a surrogate analysis of a Fire Spotting model introduced in [1] by the

means of Polynomial Chaos (PC) and Gaussian Processes (GP);
� Perform Variance-based Sensitivity Analysis and Uncertainty Quantification on the

output.

Fire-spotting and Turbulence
The firebrand landing distribution q(�) is defined by a lognormal distribution as follows:
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� μ is the ratio between the square of the mean of landing distance � and its
standard deviation, [3],

� σ is the standard deviation of the fire-spotting distribution improving [3].
Here we have some analytical representations:
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where Hmax is the maximum loftable height, ν is an inertial correction for the firebrand, ρf is the fuel
density, ρ is the ambient air mass density, Cd is the drag coefficient, U is the wind velocity, r is the
firebrand radius, g is the gravitational acceleration, α, β, γ, δ are empirical constants, Pf 0 = 106W is
the reference fire power, Habl is the height of the atmospheric boundary layer, N is the Brunt Väisälä
frequency and subscript FT refers to the free troposphere.
Turbulence is modelled via a Gaussian Distribution having parameter D, given by

D � 0.1 χ [γ ΔT g h3/(νχ)]1/3 − χ,

With χ the thermal diffusivity of the air at ambient temperature , γ the thermal expansion coefficient,
ΔT the temperature difference of the convective cell.

Computing Priors for input parameters
μ, σ and D depend themselves on a large set of sub-parameters. The ones affected by
uncertainties are perrturbed around their nominal literature values and a MC simulation
is pursued, in order to have Prior distributions. The results are fitted with Beta
Distributions.

(a) Fit for μ (b) Fit for σ (c) Fit for D
Histograms for Mu, Sigma , D and their respective fits with Beta Distributions.

Workflow

After determining the PDF of the three parameters, here is the followed workflow:

� Sampling with Low Discrepancy Sequences two databases of triples (μ, σ, D), one
for training and the other for cross validation;

� Running the WLF simulator for each sampled triple and collect Quantities of
Interests (QoI): e.g. Burnt Area at time t = T ;

� Creating a Surrogate Model for selected QoI h with a weighted finite sum of basis
functions:

h∗
i (x) =

r∑
i=0

γi Ψi (x) .

The functions Ψi can be of different shape according to the type of algorithm
(e.g., PC or GP based);

� Compute the coefficients γi through regression or projection schemes. LAR-based
sparse algorithm for PC are adopted (see [2]);

� Use the surrogate as a simulator to compute Sobol’ Coefficient for the inputs and
QoI statistics.

Results
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Conclusions

� The most influential parameter in determining burnt area under uncertainties is σ,
related to the ballistic trajectory of embers.

� Sparse algorithms for PC allow to attain high degree polynomials while mantaining
low the computational budget.

� Different algorithms can lead to the same overall accuracy but may filter out in
different way the less influential variables.
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