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Introduction

Fire-spotting is a harmful phenomenon that accelerates the rate of the spread of fire by
producing new independent ignitions by burning embers. |t is a multi-scale and a
multi-physics phenomena, and the models that try to predict it depends on a wide range
of parameters subject to lack of knowledge and/or randomness. In this work we shall

» Perfom a surrogate analysis of a Fire Spotting model introduced in [1] by the
means of Polynomial Chaos (PC) and Gaussian Processes (GP);

» Perform Variance-based Sensitivity Analysis and Uncertainty Quantification on the
output.

Fire-spotting and Turbulence

The firebrand landing distribution g(£) is defined by a lognormal distribution as follows:
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» 1 is the ratio between the square of the mean of landing distance £ and its
standard deviation, [3],

» o is the standard deviation of the fire-spotting distribution improving [3].
Here we have some analytical representations:
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where Hp,ax is the maximum loftable height, v is an inertial correction for the firebrand, pr is the fuel
density, p is the ambient air mass density, Cq4 is the drag coefficient, U is the wind velocity, r is the
firebrand radius, g is the gravitational acceleration, o, B, 7, & are empirical constants, Prg = 10°W is
the reference fire power, H,p is the height of the atmospheric boundary layer, N is the Brunt Vaisala
frequency and subscript FT refers to the free troposphere.

Turbulence is modelled via a Gaussian Distribution having parameter D, given by

q(£) =

D~01x[yATgh®/(vx)]"? - x,
With x the thermal diffusivity of the air at ambient temperature , v the thermal expansion coefficient,

AT the temperature difference of the convective cell.

» Creating a Surrogate Model for selected Qol h with a weighted finite sum of basis
functions:

hi(x) =) 7ivi(x).
i=0

The functions W; can be of different shape according to the type of algorithm
(e.g., PC or GP based);

» Compute the coefficients ~y; through regression or projection schemes. LAR-based
sparse algorithm for PC are adopted (see [2]);

» Use the surrogate as a simulator to compute Sobol’ Coefficient for the inputs and
Qol statistics.

Results
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Conclusions

Computing Priors for input parameters

i, o and D depend themselves on a large set of sub-parameters. The ones affected by
uncertainties are perrturbed around their nominal literature values and a MC simulation
is pursued, in order to have Prior distributions. The results are fitted with Beta
Distributions.
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Histograms for Mu, Sigma , D and their respective fits with Beta Distributions.

» The most influential parameter in determining burnt area under uncertainties is o,
related to the ballistic trajectory of embers.

» Sparse algorithms for PC allow to attain high degree polynomials while mantaining
low the computational budget.

» Different algorithms can lead to the same overall accuracy but may filter out in
different way the less influential variables.
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Workflow

After determining the PDF of the three parameters, here is the followed workflow:

» Sampling with Low Discrepancy Sequences two databases of triples (., o, D), one
for training and the other for cross validation;

» Running the WLF simulator for each sampled triple and collect Quantities of
Interests (Qol): e.g. Burnt Area at time t = T;
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