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Context

In the nuclear energy domain, system codes are dedicated to the thermal-hydraulic
analysis of nuclear reactors, mainly for safety and accidental situations studies. We are
here interested in the Cathare code developed by CEA, EDF, AREVA-NP and IRSN.
To improve the response time, we consider a strategy, complementing the space
domain decomposition, based on the parareal method [LionsMadayTurinici,2001].

Cathare model

The 6 equations two fluid model. Main unknowns: (p, αv, uk,Hk)
∂t(αkρk) + ∂x(αkρkuk) = 0

αkρk∂tuk + αkρkuk∂xuk + αk∂xp = αkρkg + Fint
k
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with αk ∈ [0, 1], αg + αl = 1 and the two equations of state : ρk = ρk(p,Hk).

Interfacial forces Fint
k are of 2 types:

I ensures hyperbolicity of the system [Ndjinga,2007]
I interfacial friction term to deal numerically with vanishing phase

Cathare scheme

Figure : Oscillating manometer [HewittDelhayeZuber,1991]

I Initial condition: P = 105,
hl = 4.17× 105,
hv = 2.68× 106,
uv = ul = −2.1 and αv ={

1− 10−5, in the upper half

10−5, elsewhere
I Time interval : [0,20]

I Error norm:
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Analytical solution
44 cells, ∆T = 10−3

110 cells, ∆T = 4 10−4

220 cells, ∆T = 2 10−4

440 cells, ∆T = 10−4

880 cells, ∆T = 5 10−5

Figure : Numerical convergence for liquid velocity
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Figure : Fractionnal order of convergence of the
Cathare scheme, see [BoucheGhidagliaPascal,2006]
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Parareal algorithm
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Sequential coarse propagation U0
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Fine parallel propagation F (U0
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Iteration k=1

I Uk
n is obtained by the recurrence relation:

Uk+1
n+1 = G

Tn+1

Tn
(Uk+1

n ) + F
Tn+1

Tn
(Uk

n)− G
Tn+1

Tn
(Uk

n)

I Stability and convergence analysis in [GanderVandewalle,2007].
I Instabilities can arise for hyperbolic equations [DaiMaday,2012]

Numerical results

Coarse and fine solvers share the same physics and mesh 110 cells:
I ∆tcoarse = 2.5× 10−4 and δtfine = 10−5 (left)
I ∆tcoarse = 10−4 and δtfine = 10−5 (right)
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Figure : Convergence of the parareal algorithm:

ek(Tn) =
||Uk

n−Useq
n ||L2

||Useq
n ||L2

, ∀n ∈ {0, 1, · · · ,N},

k ∈ {0, 1, 2, 3}
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Figure : Speed up (Strong scaling)
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Figure : Parareal with ∆T = 4× 10−4 on 4 and 8 time windows

Conclusions

I Implementation of a numerical clone of Cathare restricted to the oscillating manometer
I Order of convergence of the Cathare scheme
I Numerical convergence and speed up performances
I Influence of coarse solver on the stability of parareal

Perspectives

I Study of the instability of parareal for hyperbolic problems
I Analysis of the properties of Cathare scheme in monophasic case
I Coarsen spatial discretisation also and use projection operators between meshes
I Performances of the method : scalability, scheduling of tasks


