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Introduction and Previous Results Discrete Energy Law and Positivity
The movement of biological cells in response to chemical signals, also called as Let us consider the following discrete counterpart of (3):
chemotaxis, was modelled by Keller-Segel in 1970. Although there are several models, we 1 o 1, S - .
will focus on the classical one, which is given by the following equations in 2 C R": Em = /QE‘VV |+ /QE i /Q uvve + /Q u™log (u™),

ur = Au— o1V - (uVv xeQ t>0 VY u™ 2

t ( )? Y Y Dm — / |5tvm‘2 + / l /umvm :

Vi = aoAv — a3v + U, x €, t>0, 0 o |v/um

ou — ov —0 XxE O t>0 (1) where we denote 6;A™ = (A™ — A™=1) /k for any squence {A™}, and let

ov  Ov ’ ’ ’ 1

’7 m m
u(x,0) = up(x), v(x,0) = w(x), x €, Np = 5/ 2% ‘2 + 5/ 0:(Vv )‘29 v € {0,1}.
Q Q

where u and v represent the density of cells and chemical-signal, respectively.

Recently, a lot of research in this subject has been done from an analytical point of view
(see e.g. [1] and references therein). Although the number of results related to numerical

Theorem 2. Let us consider the schemes given by (4).
1. For any (r, r2, 13, 1), the following energy law holds with v = 1:

d
analysis of (1) is much lower. Here we focus on this topic. d_Em < —D,,— kN,, + kM, (5)
..................................................................................... t
1. Global in time existence and boundedness of the solution has been shown if the where Mp, > 0 (numerical source) does not depend on k.
initial data is small enough. For instance, for n = 2 one has: 2. The case (r1, r2, r3, r3) = (1, 1,1, 0) is the only one with M, = 0 (minimizes M)
Theorem 1. Suppose that n = 2 and £2 € R" is a bounded domain with smooth 3. The case (1, r2, r3, ra) =(1, 0, 1, 0) also satisfies (5) with v = 0 (minimizes Np,)
boundary, that ug € C%(RQ) and v € Uy, W19(Q) are non-negative, and that (u, v) 4. If i =1 then u™*! and v™*! are non-negative solutions of (4) for all m.

denotes the corresponding maximally extended classical solution of (1) in X (0, Tmax)-

If o up < 4, then (u, v) exist glo
[u(s t)|[ (@) + |

2. Energy law is important for a proof of Theorem 1 [1]:

pally and satisfies

V(s t)|[ o) < Cforallt >0 (2)
Q =[-2,2]? C R? (a1, a2, a3, 1) = (0.2,1,0.1,1), ug = 1.15e~ "+ (4 — x2)2(4 — y?)2,

vo = 0.55e~*+¥)(4 — x2)2(4 — y?)2. Blow-up expected [5]. Discretization: 30 X 30 mesh (h ~ 10~1), k = 10~*.
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Lemma 1. If (u, v) is a non-negative classical solution of (1) in X (0, T'), then 2l s o o |
d oo :
—E(u(-, t),v(-,t)) = —D(u(-, t), v(:, 1)), (3) 00 p—a——s—~a—s—s—=—
d t 2':%5 50 100 150 200 250 300
for all t € (0, T), with energy e
0.5} |
1 1 ol \ »
E(u,v) := —/ [Vv|? —/ v? — / uv+ [ ulnu sl e —
2 Q 2 Q Q Q 20 g‘y | Timeittlerations | = E
and the dissipation rate S il Experiment 2
2 e Left: maxg(u™) and E,, for schemes 1110, 1010 and 0000. Detail of finite-time blow-up for u (time step m = 260). Left to right: 0000, 1010
V U ® Right: plot of u™ (top) and E,, (bottom) a time step m = 50. and 1110 schemes. Spurious oscillations appear. They are bigger in those schemes with
D( U, V) = Vt2 _l_ \/EV U . As expected from Theorem 2, energy is lower (and blow-up is earlier) for 1110. | lower energy and earlier blow-up.
...................................................... .. Numerical TEStS_ 2: POSiti\Iit Test Suite
3. Blow-up phenomena have been detected for large initial data (e.g. fﬂ up > 4m, y
n = 2) but Only partlal results exits and general Case 1S an open prOblem [1] Also (3) IS Same data than in Numerical Test 1. We used FreeFem++ [2, 3] (for usual Py Lagrange elements) and Libmesh [4] (for
a fundamental ingredient in this type of results. But (as far as we know) discrete versions Lobatto hierarchic and Bernstein FE families of basis functions). Results for 3 schemes are summarized in the table below.
of (3) like those ones we are dealing here have not yet been sistematically studied. L=Lagrange FE family, steme: 111011 e 5
..................................................................................... H=Hierarchic FE family, j: i:’gg' ' max(v) gé e ié(g) maX(v_)
4. Positivity of solution is well known (but not trivially inherited by discrete schemes) B=Bernstein FE family. ol el
e . . /: Os|t|ve’ X:non_ OSltlve %% 5 _160_ 15_0 280 250 13 55 _160_ 1%0 260 250 "0 5o TiOiteraltSi(())ns 200 250 +0 50 Ti;(loiteriggns 200 250
Proposition 1. Let be (u, v) a solution of (1) in 2 X (0, T) for some t > 0. If 3 ; s
. . . . . 0.0 ! ; ‘ | . ‘ 1 . P : m
ug > 0 and vp > 0, then u and v are non-negative functions in their domain. Order 1110 1010 0000 o3| - Zhreon SSknin = +9.175.08 "
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Semi-Discretization in Time Y SRS L s
3 X X XX XX . ol >
Family of semi-discretizations in time: for a partition of (0, T) into subintervals of size 4 2 A A os| R
k > 0, We approximate u and v at each time step ™! by implicit Euler as follows: S /I X X/ e T PaRET T | T T e Y e
6 X \/ X X X \/ 2213 ,,,,,, - ] 12 1e7~3, rrrrrrrrrrr min(v) ;213 ,,,,,,, = min 1
Um_|_1 — kA Um_l_1 kV . (um+r1V vm+r2) — um, (4) 7 X X X 12 m=+1029e08 o 2?1“”*4921809 ijim"’”='5-67le'0() i“ e
Vm+1 I kA Vm+1 kv Vrn-l_r3 -I- kum+r4 pu— vm, 8 X X X 005 5;) Ti;(;oiteralt_?gns 2(;0 250 0:00 77777 5;0Tirtc;>eoiter;1t5i2nszooz5o _0:50 5L> Ti;c;oiter;tsignszoozso _0:20 56 Ti;(;oiter;tsi:ns 22)0 250
. . . Experiment 3. Examples from experiment 3, 1110 time scheme.
Where r].? r29 r37 r4 E {07 ]'} and WE fIX al — ]' (I — 19 *°* ) 4) We ar€ IntereSted Positivity of three time schemes. For each scheme, e Top row, left to right: Lagrange order 1 (non-positive X) and Lagrange order 2 (positive v).
energy_stabi“ty and pOS|t|V|ty Of FE apprOXimationS for those 12 tup|aS (r]_7 r29 r3, r4) three FE families (FE basis functions) are compared. e Bottom row, left to right: Bernstein order 6 (positive v') and Hierarchic order 8 (non-positive X).

vnich resultin finear uncoupled schemes (i with 214 = 0)
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