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Introduction and Previous Results

The movement of biological cells in response to chemical signals, also called as
chemotaxis, was modelled by Keller-Segel in 1970. Although there are several models, we
will focus on the classical one, which is given by the following equations in Ω ⊂ Rn:

ut = ∆u − α1∇ · (u∇v), x ∈ Ω, t > 0,

vt = α2∆v − α3v + α4u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1)

where u and v represent the density of cells and chemical-signal, respectively.

Recently, a lot of research in this subject has been done from an analytical point of view
(see e.g. [1] and references therein). Although the number of results related to numerical
analysis of (1) is much lower. Here we focus on this topic.
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1. Global in time existence and boundedness of the solution has been shown if the
initial data is small enough. For instance, for n = 2 one has:

Theorem 1. Suppose that n = 2 and Ω ∈ Rn is a bounded domain with smooth
boundary, that u0 ∈ C0(Ω) and v ∈ ∪q>nW

1,q(Ω) are non-negative, and that (u, v)
denotes the corresponding maximally extended classical solution of (1) in Ω× (0,Tmax).
If
∫

Ω u0 < 4π, then (u, v) exist globally and satisfies

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ C for all t > 0 (2)
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2. Energy law is important for a proof of Theorem 1 [1]:

Lemma 1. If (u, v) is a non-negative classical solution of (1) in Ω× (0,T ), then

d

dt
E(u(·, t), v(·, t)) = −D(u(·, t), v(·, t)), (3)

for all t ∈ (0,T ), with energy

E(u, v) :=
1

2

∫
Ω
|∇v |2 +

1

2

∫
Ω
v

2 −
∫

Ω
uv +

∫
Ω
u ln u

and the dissipation rate

D(u, v) :=

∫
Ω
v

2
t +

∫
Ω

∣∣∣∣∇u√
u
−
√
u∇u

∣∣∣∣2 .
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3. Blow-up phenomena have been detected for large initial data (e.g.

∫
Ω u0 > 4π,

n = 2) but only partial results exits and general case is an open problem [1]. Also (3) is
a fundamental ingredient in this type of results. But (as far as we know) discrete versions
of (3) like those ones we are dealing here have not yet been sistematically studied.
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4. Positivity of solution is well known (but not trivially inherited by discrete schemes)

Proposition 1. Let be (u, v) a solution of (1) in Ω× (0,T ) for some t > 0. If
u0 ≥ 0 and v0 ≥ 0, then u and v are non-negative functions in their domain.

Semi-Discretization in Time

Family of semi-discretizations in time: for a partition of (0,T ) into subintervals of size
k > 0, We approximate u and v at each time step tm+1 by implicit Euler as follows:{

um+1 − k∆um+1 + k∇ · (um+r1∇vm+r2) = um,

vm+1 − k∆vm+1 + k∇vm+r3 + kum+r4 = vm,
(4)

where r1, r2, r3, r4 ∈ {0, 1} and we fix αi = 1 (i = 1, . . . , 4). We are interested
energy-stability and positivity of FE approximations for those 12 tuplas (r1, r2, r3, r4)
which result in linear uncoupled schemes (i.e. with r2 · r4 = 0).
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Discrete Energy Law and Positivity

Let us consider the following discrete counterpart of (3):

Em =

∫
Ω

1

2
|∇vm|2 +

∫
Ω

1

2
|vm|2 −

∫
Ω
u
m
v
m +

∫
Ω
u
m log (um),

Dm =

∫
Ω
|δtvm|2 +

∫
Ω

∣∣∣∣∇um√
um
−
√
umv

m

∣∣∣∣2 ,
where we denote δtΛm = (Λm − Λm−1)/k for any squence {Λm}, and let

Nm =
γ

2

∫
Ω
|δtvm|2 +

1

2

∫
Ω
|δt(∇vm)|2, γ ∈ {0, 1}.

Theorem 2. Let us consider the schemes given by (4).

1. For any (r1, r2, r3, r4), the following energy law holds with γ = 1:

d

dt
Em ≤ −Dm − k Nm + k Mm, (5)

where Mm ≥ 0 (numerical source) does not depend on k .

2. The case (r1, r2, r3, r4) = (1, 1, 1, 0) is the only one with Mm= 0 (minimizes Mm)

3. The case (r1, r2, r3, r4) =(1, 0, 1, 0) also satisfies (5) with γ = 0 (minimizes Nm)

4. If r1 = 1 then um+1 and vm+1 are non-negative solutions of (4) for all m.

Numerical Tests. 1: Blow-up and Energy

Ω = [−2, 2]2 ⊂ R2, (α1, α2, α3, α4) = (0.2, 1, 0.1, 1), u0 = 1.15e−(x2+y2)(4− x2)2(4− y2)2,

v0 = 0.55e−(x2+y2)(4− x2)2(4− y2)2. Blow-up expected [5]. Discretization: 30× 30 mesh (h ∼ 10−1), k = 10−4.

Experiment 1.

• Left: maxΩ(um) and Em for schemes 1110, 1010 and 0000.

• Right: plot of um (top) and Em (bottom) a time step m = 50.

As expected from Theorem 2, energy is lower (and blow-up is earlier) for 1110.

Experiment 2.

Detail of finite-time blow-up for u (time step m = 260). Left to right: 0000, 1010

and 1110 schemes. Spurious oscillations appear. They are bigger in those schemes with

lower energy and earlier blow-up.

Numerical Tests. 2: Positivity Test Suite

Same data than in Numerical Test 1. We used FreeFem++ [2, 3] (for usual Pk Lagrange elements) and Libmesh [4] (for

Lobatto hierarchic and Bernstein FE families of basis functions). Results for 3 schemes are summarized in the table below.

L=Lagrange FE family,

H=Hierarchic FE family,

B=Bernstein FE family.

3=positive, 7=non-positive.

Order 1110 1010 0000
L H B L H B L H B

1 7 7 7 7 7 7 7 7 7

2 3 3 3 3 7 3 3 3 3

3 7 7 7 7 7 7

4 3 3 7 3 3 3

5 3 3 7 ? 7 3

6 7 3 7 7 7 3

7 7 7 7

8 7 7 7

Experiment 3.

Positivity of three time schemes. For each scheme,

three FE families (FE basis functions) are compared.

Examples from experiment 3, 1110 time scheme.

• Top row, left to right: Lagrange order 1 (non-positive 7) and Lagrange order 2 (positive 3).

• Bottom row, left to right: Bernstein order 6 (positive 3) and Hierarchic order 8 (non-positive 7).
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