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Framework Numerical experiment

» Modelling emergent and rigid vegetation in open-channel with a single porosity-based
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Longitudinal transition from meadow to wood in a laboratory flume [4]:

Well-balanced scheme : we solve (1) in two following steps:
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Approximation by simple-solver W (x/t) of (4): » emergent, rigid and circular vegetation

. . » SP capture qualitative behaviour.
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First order Godunov-type scheme : > agreement in wood region, Cy = 1.2.
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Ft= F(WL) 4+ AW — Wp) + X5 (W* — W),
FR = F(WRg) — Ar(Wgr — WZ) — X* (W — WY).

» expensive computation cost with SW. | |
» better compromise with Cy = 1.

Conclusions & Forthcoming Research
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Figure: Four-wave approximate solution of (4)

» augmented HLLC scheme well-balanced, positivity preserving and shock capturing.

Determination of intermediate states:

» further test cases have to be implemented.
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