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Framework

� Modelling emergent and rigid vegetation in open-channel with a single porosity-based
shallow water model (SP) [1].

� New Godunov-type, finite volume, well-balanced and shock capturing scheme for SP.
� Comparison with other methods in the literature [2, 3] and first application.

Single porosity shallow water model
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: depth of water,
: bed elevation,

η : Manning′s coefficient,
: drag coefficient,

φ : porosity,

⎧⎪⎪⎪⎨
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, : depth-averaged horizontal velocities,
: acceleration due to gravity,
: effective diameter of vegetation,

= 1−φ
π /4

: frontal area of vegetation.

Numerical scheme

Well-balanced scheme : we solve (1) in two following steps:

Convection:{
∂ + ∂ + ∂ = + φ,

( , 0) = .
(2)

Friction and Drag:{
∂ = τ ,
( , 0) = +1/2.

(3)

FV scheme for (2):
+1/2

= − Δ

| |
∑

Γ ⊂∂

|Γ |F( , ; , ).

Rotational invariance of the flux⇒ numerical flux derived from the 1D system (4).⎧⎪⎨
⎪⎩
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(4)
Riemann (R.) problem with ( , ) =

(0,
2

2∂ φ − φ ∂ , 0) and , the pro-
jected states , on Γ .

Approximation by simple-solver R( / ) of (4):
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Figure: Four-wave approximate solution of (4).

First order Godunov-type scheme :
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Determination of intermediate states:

• integral consistency condition:
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• HLL state for homogeneous R. problem:

=
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• R. invariants across contact discontinuities:
φ = cst., 2/(2 ) + + = cst., = cst. (6)

• (5) and 1st invariant in (6) lead to:
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λ
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• (7) and 2nd invariant in (6) lead to:

∗ =
(φ ) + αφ ( − )

αφ + (1− α)φ
,

∗ =
(φ ) − (1− α)φ ( − )

αφ + (1− α)φ
.

• (5) and 3rd invariant (6) yield:
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• steady states at rest in (8) yield:
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Semi-implicit scheme for (3): (φ ) +1 =
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Numerical experiment

4.4

4.41

4.42

4.43

4.44

6 8 10 12 14

h
u
(m

2
/
s)

x(m)

Reference solution
Hydrostatic approx.
Bernoulli resolution

Figure: Steady sub-critical flow over a bump.

� well-known test case of SW model.
� Bernoulli relation in (6):

∗2

2
+ ∗ + =

∗2

2
+ ∗ + .

� hydrostatic approximation yields:
∗ + = ∗ + .

� as efficient as the PorAS scheme [2] for
this type of regular solution.

� test case from [3], exact solution known.
� complex structure: 1-rarefaction wave,

stationary discontinuity, 1-rarefaction
wave then 2-shock wave.

� hydrostatic approximation: wrong
solution unlike Bernoulli resolution.

� PorAs scheme can have difficulties to
estimate shock waves speed.
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Figure: Dambreak with large porosity discontinuity.

Longitudinal transition from meadow to wood in a laboratory flume [4]:

Figure: Velocity field and unit discharge in wood
region: SW model (top) and SP model (bottom).
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Figure: Water depth around the transition.

� emergent, rigid and circular vegetation
distributed in staggered rows.

� expensive computation cost with SW.
� SP capture macroscopic behaviours.

� SP capture qualitative behaviour.
� agreement in wood region, = 1.2.
� better compromise with = 1.

Conclusions & Forthcoming Research

� augmented HLLC scheme well-balanced, positivity preserving and shock capturing.
� further test cases have to be implemented.
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