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Introduction
Standard dynamic models used in the literature to study different types of economic and environmental problems have considered just time dependence. A recent study ([1]) takes into account not just the time
but the spatial dependence and considers agents that behave both, dynamically and strategically. The model considered is a J-player non-cooperative differential game, where a planar region Ω is subdivided in J
subregions Ωj , j = 1, . . . , J . The objective of player j is to maximize its own payoff, choosing the rate of pollutant emissions in subregion Ωj . The focus of the present work is to extend this research, studying
the capabilities of the same model to analyse the optimal intraregional distribution of emissions, and to characterize feedback Nash equilibria of the resulting differential game.

Model problem

Let uj(� , t) for j = 1, . . . , J , the emission rate of subregion Ωj . The spatio-temporal dynamics of the
stock of pollution P(� , t) is given by the parabolic PDE

∂P

∂t
= ∇ · (k∇P)− cP + F (�) in Ω,

where � = [u1, . . . , uJ]
T is the vector of emission rates, k = k(�) is a local diffusion coefficient, which

is assumed to be a smooth function. The term −cP is a natural decay of the pollutant and the source
term can be written in the form

F (�(� , t)) =
J∑

j=1

Fj(uj(� , t))1Ωj
(�),

being Fj a given family of smooth functions for j = 1, . . . , J and 1Ωj
the characteristic function of

subregion Ωj . The dynamics is completed with an initial condition

P(� , 0) = P0(�) in Ω,

where P0 is the initial distribution of the stock of pollution, and a boundary condition

α(�)P(� , t) + k(�)∇PT (� , t)� = 0 on ∂Ω,

being α(�) a non-negative smooth function and � the normal vector exterior to Ω. Objective of player
j is to choose the distributed control uj , in order to maximize its payoff

Jj(u1, . . . , uJ,P0) =

∫ +∞

0

∫
Ωj

e−ρtGj(u1, . . . , uJ,P) d�dt,

where ρ > 0 is a given time-discount rate and Gj are the benefits from consumption net of environmental
damages.

Extended discrete-space model

An extension of the discrete-space model studied in ([1]) is deduced as follows. Each subregion Ωj is
subdivided in Nj smaller subregions Ωj ,l , for j = 1, . . . , J and l = 1, . . . ,Nj . Let pj ,l(t) the averaged
stock of pollution over subregion Ωj ,l , and vj ,l(t) the averaged emissions over Ωj ,l , for j = 1, . . . , J and
l = 1, . . . ,Nj ,

pj ,l(t) =
1

|Ωj ,l |
∫
Ωj ,l

P(� , t) d� , vj ,l(t) =
1

|Ωj ,l |
∫
Ωj ,l

uj(� , t) d� .

Let N = N1 + . . .+NJ the total number of subregions and h a biyective function that relates global and
local order of subregions. The objective of player j is to maximize the space averaged payoff

J̃j(vj ,1, . . . , vj ,Nj
,�0) =

∫ +∞

0

e−ρt
Nj∑
l=1

|Ωj ,l |G̃j(vj ,l , pj ,l) dt,

subject to the dynamics of the aggregated stock of pollution in each subregion, described by the following
system of ODEs:

ṗh(i1) =
1

|Ωh(i1)|
N∑

i2=0, i2 �=i1
ki1 i2(ph(i2) − ph(i1))− ch(i1)ph(i1) + Fh(i1)(vh(i1)), i1 = 1, . . . ,N ,

being ch(i1) the averaged natural decay parameter and (ki1 i2)1,≤i1,i2≤N the diffusion matrix, satisfying
ki1 i1 = −

∑
i2 �=i1 ki1 i2. The system is supplemented with the initial condition

ph(i1)(0) =
1

|Ωh(i1)|
∫
Ωh(i1)

P0(�) d� := p0h(i1), i1 = 1, . . . ,N ,

where �0 = [p01, . . . , p
0
N]

T .

A linear-quadratic specification

Some specifications (inspired in the literature of transboundary pollution dynamic games, [2]) are introduced to characterize the feedback Nash equilibria. Let βj ,l , Aj ,l and ϕj ,l constant parameters for all
j = 1, . . . , J and l = 1, . . . ,Nj . Then,

Fj ,l(v1,1, . . . , vJ ,NJ
) := βj ,l vj ,l , G̃j(v1,1, . . . , vJ ,NJ

,�) := vj ,l
(
Aj ,l − vj ,l

2

)
− ϕj ,l

2
p2j ,l , � := [p1, . . . , pN]

T , vj ,l = vj ,l(�), |Ωh(i1)| = |Ωh(i2)|, ∀ i1, i2 = 1, . . . ,N .

Numerical method and results

In order to characterize numerically the feedback Nash equilibria of the differential game, a numerical method in two steps is introduced. On the first step, a time-discrete version of the problem is considered,
discretizing the averaged payoff by means of the rectangle rule and then using a forward Euler discretization of the dynamics. Secondly, a space-discretization is applied. The time-discrete value function is
computed solving a system of Bellman equations, and the solution of this system is approximated using a collocation method based on tensorial product of linear splines and a fixed-point iteration.

Two numerical examples are presented. In both, a two-player (two-region) version of the described differential game is considered. Region Ω1 is subdivided in two subregions, Ω1,1 and Ω1,2, and region Ω2 is
subdivided in two subregions too, Ω2,1 and Ω2,2. Each region optimally chooses the emission rates in the two subregions under its control. The parameters in the linear-quadratic specification are chosen equal in
each subregion, Aj ,l = 0.5, ϕj ,l = 1, βj ,l = 1, cj ,l = 0.01, ρ = 0.1 for all j , l = 1, 2, and the measure of each subregion is considered |Ωj ,l | = 0.25.

Neumann homogeneous boundary conditions

In the first example, homogeneous Neumann boundary conditions (α(�) = 0 for all � in Ω) are con-
sidered all over the boundary of the domain. This means that there is no exchange of pollution with
the exterior of Ω. The players are completely symmetrical in every respect, except in their geographical
positions.

Emissions Pollution stock

Figures above show that the two regions behave in a symmetrical way. Both emit at the greatest level
in the subregion that shares a boundary with its neighbour. The left plot shows the equilibrium emission
rates and the right one the steady-state levels of the stock pf pollution.

Conclusions

A J-player non-cooperative differential game that takes into account spatial dependence is studied. An
extended discrete-space model is deduced (fitting the structure used in [3]) by means of aggregated
variables, maintaining the three main features of the original formulation: the model is truly dynamic,
the agents behave strategically and the model incorporates the spatial aspect. Some numerical results
illustrate the optimal intraregional distribution of emissions of the pollutant in each subregion. One of
the difficulties that it is necessary to confront is the high dimensionality of the Hamilton-Jacobi-Bellman
system of equations that characterizes the feedback Nash equilibria.
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Adding Dirichlet homogeneous boundary conditions

In the second example, homogeneous Neumann boundary conditions are considered all over the bound-
ary of the domain (α(�) = 0), except in the upper boundary of Ω1,2 where an homogeneous Dirichlet
boundary condition is imposed (α(�) = 1). The exterior of Ω is assumed to have a lower concentration
of pollutants than subregion Ω1,2.

Emissions Pollution stock

The equilibrium emission strategies have lost the symmetric property observed in the first example, as it
is shown on the Figures above. Region Ω1 can benefit from the spatial position of Ω1,2 and emit in this
subregion above the level of emissions in the other subregion. However, the long-run stock of pollution
in subregion Ω1,2 is lower than in the other subregions. This can be explained because of the flow of
pollution exiting Ω1,2 towards the exterior of Ω. This results cannot be reproduced in a transboundary
pollution dynamic game with symmetric players if the spatial transport of pollution is neglected.
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