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This work is concerned about a non-intrusive method for Partial Differential Equations Solve a PDE with stochastic data:

(PDEs) in Uncertainty Quantification (UQ), which is based on Harten's Bru(x, t, &) + Db (x, t, &, u(x, t,£)) = 0,
Multiresolution Framework (MRF). It was originally proposed in [1,2], and we recently
studied it as an approximation method for piecewise smooth functions [3].

where & is a random variable. For example, & ~ U[0, 1].
Goal: Compute u or some related statistic, like the expectancy

1
E(x,t) = | ulx, £,p(€)dx ~ 3 avulx, £, E4)p(E)).

Harten’s Multiresolution Framework

Let us consider f : [0,1] — R. Harten's MRF is based on a multiscale data

representation, which relies in a set of nested grids that lead to two basic operations: on a space-time grid of N - N points. For this, take a numerical scheme to compute

» D,: Discretization operator. Example: Dy f = (f(flk)), =: vk, f,k = i27k. uJ’f'(S) ~ u(xj, t",£), and denote it as a function

» R.: Reconstruction operator. Examples: Polynomial or ENO interpolation. uj’-q(f) =: f;-"_l(ﬁ’), j=01,....N,, n=1,2,...,N,.

C,(_[Q’_l\D h okl L n ,C_(LO_,_l]_) The nume.rical schemei{may be hard tf) evaluate. ldea: Apply Truncate and Encode
%_) pF L | | | | | | * 1 s ):/Rk+1vk+\1\ to approximate (:j."(g,. )), for each j, n.

|

Numerical experiments

|
«_ Dk gk—l—l vlk _ f(z2_k) - o Yy
S . ’ We solved the Burguers equation, ¢(x, t, u) = u?/2, for the initial data
Compatibility condition: DR ,v™ = v ug(x, &) = sin(mx§&), with parameters £ € [1.5,2.5], x € [0, 1], N, = 100,
Handling data between grids: CFL = 0.8, ¢k = (i2_k/3),?:30, k=0,1,...,11. We used the second order
21 MHM scheme [2]. We computed the expectancy with p(&) = 1 using the t idal
> Diy1 = DiRour: Decimation operator. Example: Dj v = (Vzi );:o rule. The number of times that the scheme must be applied to compute the solution
> P,f“ = D11 R«: Prediction or subdivision operator. Example: PCHIP rule, (u™Nt) without TE is 155,781,895.
1 1 1
k+1, k k k k k k k 1 RS a b e
(P i = v 4 gvina = g (H(VV7 Vi) = HY (v, V) N B = =
H is the harmonic mean. 2%_ | > o -
> Detail coefficient: d¥ := vzkl"_l'_l1 — (P v9)2i41 a -
<o) PPN DRt CO)
¢~ Ry k+1 l l | | l | o pF 1D ¢ Ny 107 o7 E | 10 o7 e
: k_|_1 : /—'_1 (% I I I | I I gk_|_1 I w & : k : # scheme evaluations # scheme evaluations
| R qv ! D;. R L Rev®
: > b | | ok = :
b y & oo

k_ Pk okl k41
v" = D 0" = DRy 0™

Approximation order s: df = O(27%°), Vi, k

Truncate and Encode - Adaptive approximation strategy

. . ~ K .
Goal: Given € > 0, obtain some VX € R? *! such as ||[vK — 0K||o < €, but

Y

using as few evaluations of f as we can. Why? Because f could be hard to evaluate.

A

Start with V0 = Dyf, V! = D;f and compute recursively:

k+1 » k .o k—1
~ k+1 (P V5 )2iv1, if|d; < € : -
Vo, 1 = < Vi e {2/.2]+1
Modified detail coefficient: d/™" := A2k'+1 — (P/l((_l‘?k_l)ZjH- Top figures: For the linear, cubic and PCHIP interpolations, the numb. times the
) J y ! N
d2 =0 &2 =0 |3 < €? L|d3| < €7 scheme £"(§) is used vs. the error max; ; |u; ‘(&) — a; “(&7°)] (left) and
T =P = (oY) | wd=f(&) T w=fE) max; |trapz (£, (u"(¢))23) — trapz(¢X, (u]"(£K))23)] (right). Figure (a):
%MCZH < 9o 03 ‘}Og}\dﬂ < 5?40' The approximated solution without TE u™:. Figures (b), (c), (d): The linear, cubic
E -2 _ If(§2) @:2 -2 If( 2) 52 and PCHIP interp. (respectively) were used (blue (&, x) points) instead of the scheme
‘0 : : ké‘&o‘l 0 : : : (yellow points). The corresponding errors are: (b) 6.6990e-3, (c) 1.9057e-3 and (d)
O .
| : I 8.1156e-4.
o 0 = f(&1) 03
"0 _ £(¢0 o) = f(&) . . .. . .
v = f(&) » The TE algorithm drastically reduces the computation time when simulating PDEs

with stochastic parameters.

> can be safely appled even in presence of discontinuties

» The efficiency (the ration between error and computation time) strongly depends on
the approximation capabilities of the prediction operator.
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