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Abstract

This work is concerned about a non-intrusive method for Partial Differential Equations
(PDEs) in Uncertainty Quantification (UQ), which is based on Harten’s
Multiresolution Framework (MRF). It was originally proposed in [1,2], and we recently
studied it as an approximation method for piecewise smooth functions [3].

Harten’s Multiresolution Framework

Let us consider f : [0, 1] −→ R. Harten’s MRF is based on a multiscale data
representation, which relies in a set of nested grids that lead to two basic operations:

� Dk: Discretization operator. Example: Dkf =
(
f (ξk

i )
)
i =: vk, ξk

i = i2−k.
� Rk: Reconstruction operator. Examples: Polynomial or ENO interpolation.
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Compatibility condition: DkRkvk = vk.

Handling data between grids:

� Dk
k+1 = DkRk+1: Decimation operator. Example: Dk

k+1v
k+1 =

(
vk+1
2i

)2K

i=0

� Pk+1
k = Dk+1Rk: Prediction or subdivision operator. Example: PCHIP rule,
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H is the harmonic mean.
� Detail coefficient: dk

i := vk+1
2i+1 − (Pk+1

k vk)2i+1
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Approximation order s: dk
i = O(2−ks), ∀i , k

Truncate and Encode - Adaptive approximation strategy

Goal: Given ε > 0, obtain some v̂K ∈ R
2K+1 such as ‖vK − v̂K‖∞ � ε, but

using as few evaluations of f as we can. Why? Because f could be hard to evaluate.
Start with v̂0 = D0f , v̂1 = D1f and compute recursively:

v̂ k+1
2i+1 =

{
(Pk+1

k v̂ k)2i+1, if |d̂k−1
j | < ε

f (ξk+1
2i+1), if |d̂k−1

j | ≥ ε
, ∀i ∈ {2j , 2j + 1}

Modified detail coefficient: d̂k−1
j := v̂ k

2j+1 − (Pk
k−1v̂

k−1)2j+1.

v̂10 v̂11 = f(ξ11) v̂12

v̂00 = f(ξ00)
v̂01 = f(ξ01)

¿|d̂00| < ε?no no
v̂20

v̂22

v̂24v̂21 = f(ξ21) v̂23 = f(ξ23)

¿|d̂10| < ε? ¿|d̂11| < ε?yes yes

v̂31 = (P 3
2 v̂

2)1 v̂33 = (P 3
2 v̂

2)3 v̂35 = f(ξ35) v̂37 = f(ξ37)

no no

d̂20 = 0 d̂21 = 0 ¿|d̂22| < ε? ¿|d̂23| < ε?
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Truncate and Encode - PDE in Uncertainty Quantification

Solve a PDE with stochastic data:

∂tu(x, t, ξ) + ∂xφ(x, t, ξ, u(x, t, ξ)) = 0,

where ξ is a random variable. For example, ξ ∼ U[0, 1].
Goal: Compute u or some related statistic, like the expectancy

E(x, t) =
∫ 1

0
u(x, t, ξ)p(ξ)dx ≈

∑
i

αiu(x, t, ξK
i )p(ξ

K
i ),

on a space-time grid of Nx · Nt points. For this, take a numerical scheme to compute
un

j (ξ) ≈ u(xj, tn, ξ), and denote it as a function

un
j (ξ) =: f n−1

j (ξ), j = 0, 1, . . . ,Nx, n = 1, 2, . . . ,Nt.

The numerical schemes may be hard to evaluate. Idea: Apply Truncate and Encode

to approximate
(
f n
j (ξ

K
i )

)
i
, for each j , n.

Numerical experiments

We solved the Burguers equation, φ(x, t, u) = u2/2, for the initial data
u0(x, ξ) = sin(πxξ), with parameters ξ ∈ [1.5, 2.5], x ∈ [0, 1], Nx = 100,
CFL = 0.8, ξk = (i2−k/3)2

k3
i=0, k = 0, 1, . . . , 11. We used the second order

MHM scheme [2]. We computed the expectancy with p(ξ) = 1 using the trapezoidal
rule. The number of times that the scheme must be applied to compute the solution
(uNt) without TE is 155,781,895.
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Top figures: For the linear, cubic and PCHIP interpolations, the numb. times the
scheme f n

j (ξ) is used vs. the error maxi ,j |uNt
j (ξK

i ) − ûNt
j (ξK

i )| (left) and
maxj |trapz(ξK, (uNt

j (ξK
i ))

2k3
i=0) − trapz(ξK, (uNt

j (ξK
i ))

2k3
i=0)| (right). Figure (a):

The approximated solution without TE uNt. Figures (b), (c), (d): The linear, cubic
and PCHIP interp. (respectively) were used (blue (ξ, x) points) instead of the scheme
(yellow points). The corresponding errors are: (b) 6.6990e-3, (c) 1.9057e-3 and (d)
8.1156e-4.

Conclusions

� The TE algorithm drastically reduces the computation time when simulating PDEs
with stochastic parameters.

� It can be safely applied even in presence of discontinuities.
� The efficiency (the ration between error and computation time) strongly depends on

the approximation capabilities of the prediction operator.
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