

XVIII SPANISH-FRENCH SCHOOL JACQUES-LOUIS LIONS ABOUT NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING Las Palmas de Gran Canaria, 25-29 June 2018

Nonlinear subdivision in UncertaintyQuantificationAntonio Baeza, Rosa Donat, Sergio López-Ureña.Poster number 7.

Universitat de València

Abstract

This work is concerned about a non-intrusive method for Partial Differential Equations (PDEs) in Uncertainty Quantification (UQ), which is based on Harten's Multiresolution Framework (MRF). It was originally proposed in [1,2], and we recently

Truncate and Encode - PDE in Uncertainty Quantification

Solve a PDE with stochastic data:

 $\partial_t u(x,t,\xi) + \partial_x \phi(x,t,\xi,u(x,t,\xi)) = 0,$

where $\boldsymbol{\xi}$ is a random variable. For example, $\boldsymbol{\xi} \sim \mathcal{U}[0, 1]$.

studied it as an approximation method for piecewise smooth functions [3].

Harten's Multiresolution Framework

Let us consider f: [0, 1] → ℝ. Harten's MRF is based on a multiscale data representation, which relies in a set of nested grids that lead to two basic operations:
D_k: Discretization operator. Example: D_kf = (f(ξ_i^k))_i =: v^k, ξ_i^k = i2^{-k}.
R_k: Reconstruction operator. Examples: Polynomial or ENO interpolation.

Compatibility condition: $\mathcal{D}_k \mathcal{R}_k \mathbf{v}^k = \mathbf{v}^k$.

Handling data between grids:

D^k_{k+1} = D_kR_{k+1}: Decimation operator. Example: D^k_{k+1}v^{k+1} = (v^{k+1}_{2i})^{2[∧]}_{i=0}
 P^{k+1}_k = D_{k+1}R_k: Prediction or subdivision operator. Example: PCHIP rule,
 (P^{k+1}_kv^k)_{2i+1} = ¹/₂v^k_i + ¹/₂v^k_{i+1} - ¹/₈(H(∇v^k_i, ∇v^k_{i+1}) - H∇(v^k_{i-1}, ∇v^k_i)),
 H is the harmonic mean.
 Detail coefficient: d^k_i := v^{k+1}_{2i+1} - (P^{k+1}_kv^k)_{2i+1}

Goal: Compute u or some related statistic, like the expectancy

$$E(x,t) = \int_0^1 u(x,t,\xi) p(\xi) dx \approx \sum_i \alpha_i u(x,t,\xi_i^K) p(\xi_i^K),$$

on a space-time grid of $N_x \cdot N_t$ points. For this, take a numerical scheme to compute $u_j^n(\xi) \approx u(x_j, t^n, \xi)$, and denote it as a function

$$u_j^n(\xi) =: f_j^{n-1}(\xi), \quad j = 0, 1, \dots, N_x, \quad n = 1, 2, \dots, N_t.$$

The numerical schemes may be hard to evaluate. **Idea:** Apply Truncate and Encode to approximate $(f_j^n(\xi_i^K))_{i}$, for each j, n.

Numerical experiments

We solved the Burguers equation, $\phi(x, t, u) = u^2/2$, for the initial data $u_0(x, \xi) = \sin(\pi x \xi)$, with parameters $\xi \in [1.5, 2.5]$, $x \in [0, 1]$, $N_x = 100$, CFL = 0.8, $\xi^k = (i2^{-k}/3)_{i=0}^{2^k3}$, $k = 0, 1, \dots, 11$. We used the second order MHM scheme [2]. We computed the expectancy with $p(\xi) = 1$ using the trapezoidal rule. The number of times that the scheme must be applied to compute the solution (u^{N_t}) without TE is 155,781,895.

Truncate and Encode - Adaptive approximation strategy

Goal: Given $\epsilon > 0$, obtain some $\hat{v}^{\kappa} \in \mathbb{R}^{2^{\kappa}+1}$ such as $||v^{\kappa} - \hat{v}^{\kappa}||_{\infty} \leq \epsilon$, but using as few evaluations of f as we can. Why? Because f could be hard to evaluate. Start with $\hat{v}^0 = \mathcal{D}_0 f$, $\hat{v}^1 = \mathcal{D}_1 f$ and compute recursively:

Top figures: For the linear, cubic and PCHIP interpolations, the numb. times the scheme $f_j^n(\xi)$ is used vs. the error $\max_{i,j} |u_j^{N_t}(\xi_i^K) - \hat{u}_j^{N_t}(\xi_i^K)|$ (left) and $\max_j |trapz(\xi^K, (u_j^{N_t}(\xi_i^K))_{i=0}^{2^k3}) - trapz(\xi^K, (u_j^{N_t}(\xi_i^K))_{i=0}^{2^k3})|$ (right). Figure (a): The approximated solution without TE u^{N_t} . Figures (b), (c), (d): The linear, cubic and PCHIP interp. (respectively) were used (blue (ξ, x) points) instead of the scheme (yellow points). The corresponding errors are: (b) 6.6990e-3, (c) 1.9057e-3 and (d)

References

[1] R. Abgrall, P.M. Congedo, and G. Geraci. A one-time truncate and encode multiresolution stochastic framework. J. Comput. Phys. 257, 19-56 (2014)
[2] G. Geraci, P.M. Congedo, R. Abgrall, and G. Laccarino. A novel weakly-intrusive non-linear multiresolution framework for uncertainty quantification in hyperbolic partial differential equations. J. Sci. Comput. 66, 358-405 (2016)
[3] S. López-Ureña and R. Donat. High-accuracy approximation of piecewise smooth functions using the truncation and encode approach. Applied Mathematics and nonlinear sciences, 2, 367-384 (2017)

8.1156e-4.

Conclusions

- The TE algorithm drastically reduces the computation time when simulating PDEs with stochastic parameters.
- ► It can be safely applied even in presence of discontinuities.
- The efficiency (the ration between error and computation time) strongly depends on the approximation capabilities of the prediction operator.

Acknowledgements

The authors thank support from Project MTM2017-83942-P (MINECO, Spain) and FPU14/02216 grant (MECD, Spain).

e-mail: bamanan@uv.es, donat@uv.es, louser@uv.es