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Chemotaxis model

Chemotaxis is understood as the biological process of the movement of living
organisms in response to a chemical stimulus which can be given towards a higher
(attractive) or lower (repulsive) concentration of a chemical substance. Specifically, we
focus on the following chemorepulsion model:⎧⎪⎪⎨

⎪⎪⎩

∂tu −Δu = ∇ · (u∇v) in Ω, t > 0,
∂tv −Δv + v = u in Ω, t > 0,
∂u
∂n

= ∂v
∂n

= 0 on ∂Ω, t > 0,
u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0 in Ω,

(1)

where Ω ⊆ R
d (d = 2, 3), and u > 0 denotes the cell density and v > 0 the

chemical concentration.

Some properties

Problem (1) is well-posed ([1]), and is conservative in u, that is,∫
Ω
u(t) =

∫
Ω
u0, ∀t > 0.

Moreover, formally testing (1)1 by ln u and (1)2 by −Δv , we obtain
d
dt

∫
Ω

(
u(ln u − 1) +

1

2
|∇v |2

)
dx +

∫
Ω

(
4|∇√u|2 + |Δv |2 + |∇v |2

)
dx = 0.

Truncated functions and operators
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Figure: The function Fε and its derivatives.

� Fε: Truncation of s(ln s − 1) + 1.
� F ′ε: Truncation of ln s.
� F ′′ε : Truncation of s−1.
� λε: Truncation of s.
� Λε: Constant by elements matrix (key

for the energy-stability of scheme UV).
� πh: Lagrange interpolator.
� (·, ·)h: Mass lumping.

Main assumptions on the space discretization

� For the scheme UV are required right angled simplices.
� For the schemes UV and US, Uh is approximated by P1-continuous FE.
� For all schemes, Vh,Σh,Zh,Wh are approximated by Pk-continuous FE, k ≥ 1.

Scheme UV

Time step n: Given (un−1
ε , vn−1

ε ) ∈ Uh × Vh, compute (un
ε , v

n
ε ) ∈ Uh × Vh s.t.{

(δtun
ε , ū)

h + (∇un
ε ,∇ū) + (Λε(un

ε)∇vn
ε ,∇ū) = 0, ∀ū ∈ Uh,

(δtvn
ε , v̄) + (Ahvn

ε , v̄)− (un
ε , v̄) = 0, ∀v̄ ∈ Vh.

Scheme US

Time step n: Given (un−1
ε , σn−1

ε ) ∈ Uh×Σh, compute (un
ε , σ

n
ε) ∈ Uh×Σh s.t.{

(δtun
ε , ū)

h+(λε(un
ε)∇πh(F ′ε(u

n
ε)),∇ū) = −(λε(un

ε)σ
n
ε,∇ū), ∀ū ∈ Uh,

(δtσ
n
ε, σ̄) + (Bhσ

n
ε, σ̄) = (λε(un

ε)∇πh(F ′ε(u
n
ε)), σ̄), ∀σ̄ ∈ Σh.

Here, the auxiliary variable σn
ε try to approximate ∇vn

ε .

Scheme UZSW

Time step n: Given (un−1
ε , σn−1

ε ,wn−1
ε ) ∈ Uh × Σh ×Wh, compute

(un
ε , z

n
ε , σ

n
ε,w

n
ε ) ∈ Uh × Zh × Σh ×Wh s.t.⎧⎪⎪⎨

⎪⎪⎩

(δtun
ε , z̄) + (λε(un−1

ε )∇zn
ε ,∇z̄) = −(un−1

ε σn
ε,∇z̄), ∀z̄ ∈ Zh,

(δtσ
n
ε, σ̄) + (Bhσ

n
ε, σ̄) = (un−1

ε ∇zn
ε , σ̄), ∀σ̄ ∈ Σh,

(δtwn
ε , w̄) = (H ′

ε(u
n−1
ε )δtun

ε , w̄), ∀w̄ ∈ Wh,
(zn

ε , ū) = 2(wn
ε H

′
ε(u

n−1
ε ), ū), ∀ū ∈ Uh.

Here, the auxiliary variables σn
ε , z

n
ε and wn

ε try to approximate ∇vn
ε , F

′
ε(u

n
ε) and√

Fε(un
ε)

Main Theoretical results

� Well-posedness of these numerical schemes.
� Unconditional energy-stability (for modified energies) and mass-conservation of the

schemes. In fact, the following discrete energy laws hold:

δt

(
(Fε(un

ε), 1)
h +

1

2
‖∇vn

ε ‖20
)
+ ε‖∇un

ε‖20 + ‖Δhvn
ε ‖20 + ‖∇vn

ε ‖20 ≤ 0, (UV)

δt

(
(Fε(un

ε), 1)
h +

1

2
‖σn

ε‖20
)
+ ε‖∇πh(F ′ε(u

n
ε))‖20d + ‖σn

ε‖21 ≤ 0, (US)

δt

(
‖wn

ε ‖20 +
1

2
‖σn

ε‖20
)
+ ε‖∇zn

ε‖20 + ‖σn
ε‖21 ≤ 0, (UZSW).

� Uniform in time energy estimates.
� Approximated positivity of un

ε and vn
ε for schemes UV and US, when ε→ 0.

Main Numerical results

� There are initial conditions for which
UZSW is not energy stable with re-
spect to the energy

Ee(u, v) :=
∫
Ω
u+(ln u+−1) dx+

1

2
‖∇v‖20,

.
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Figure: Ee(un
ε , v

n
ε ) of UZSW.

� The scheme US has convergence problems with the linear iterative method, which
are overcome considering thinner meshes.

� UV and US have decreasing energy Ee(u, v). In fact, it holds

REe(un
ε , v

n
ε ) := δtEe(un, vn)+4

∫
Ω
|∇

√
[un]+|2 dx+‖Δhvn‖20+‖∇vn‖20 ≤ 0.
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Figure: Energy Ee(un, vn) and REe(un, vn) of UV and US.

� The scheme BEUV (the classical back-
ward Euler for model (1)) has decreasing
in time energy Ee(u, v). However, for
some cases, the discrete energy inequal-
ity REe(un, vn) ≤ 0 is not satisfied.
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Figure: REe(un
ε , v

n
ε ) of BEUV.

� For UV and US, [un
ε ]− → 0 when ε→ 0, while for UZSW this behavior is not

observed. Finally, for BEUV negative values (greater than the obtained in UV and
US) for the minimum of un in some times tn > 0 are observed.
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Figure: Minimum values of un
ε computed with UV, US and UZSW respectively.

� In all schemes, for the variable vn
ε is observed that if v0

ε > 0 then vn
ε > 0 for all n.
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