

XVIII SPANISH-FRENCH SCHOOL JACQUES-LOUIS LIONS ABOUT NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING Las Palmas de Gran Canaria, 25-29 June 2018

Energy stable numerical schemes for a chemo-
repulsion model with linear production term - N^o 9

F. Guillén-González¹, M. A. Rodríguez-Bellido¹, D. A. Rueda-Gómez^{1 2}

¹Dpto. Ecuaciones Diferenciales y Análisis Numérico and IMUS, Universidad de Sevilla ²Escuela de Matemáticas, Universidad Industrial de Santander

Chemotaxis model

Chemotaxis is understood as the biological process of the movement of living

where $\Omega \subseteq \mathbb{R}^d$ ($d = 2, 3$), and $u > 0$ denotes the cell density and $v > 0$ the chemical concentration.

organisms in response to a chemical stimulus which can be given towards a higher (attractive) or lower (repulsive) concentration of a chemical substance. Specifically, we focus on the following chemorepulsion model:

$$
\begin{cases}\n\partial_t u - \Delta u = \nabla \cdot (u \nabla v) \text{ in } \Omega, \ t > 0, \\
\partial_t v - \Delta v + v = u \text{ in } \Omega, \ t > 0, \\
\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0 \text{ on } \partial \Omega, \ t > 0, \\
u(x, 0) = u_0(x) > 0, \ v(x, 0) = v_0(x) > 0 \text{ in } \Omega,\n\end{cases}
$$
\n(1)

Some properties

Problem (1) is well-posed $([1])$, and is conservative in u , that is,

$$
\int_{\Omega} u(t) = \int_{\Omega} u_0, \quad \forall t > 0.
$$

Moreover, formally testing $(1)_1$ by *In u* and $(1)_2$ by $-\Delta v$, we obtain

$$
\frac{d}{dt}\int_{\Omega}\Big(u(\ln u - 1) + \frac{1}{2}|\nabla v|^2\Big)dx + \int_{\Omega}\Big(4|\nabla\sqrt{u}|^2 + |\Delta v|^2 + |\nabla v|^2\Big)dx = 0.
$$

Truncated functions and operators

Figure: The function F*^ε* and its derivatives.

-► F_{ε} : Truncation of $s(ln s - 1) + 1$. -F *^ε*: Truncation of ln s.

Here, the auxiliary variables σ_{ε}^n , z_{ε}^n and w_{ε}^n try to approximate ∇v_{ε}^n , $F'_{\varepsilon}(u_{\varepsilon}^n)$ $\sqrt{F_{\varepsilon}(u_{\varepsilon}^n)}$ **)** and

-
- \blacktriangleright In all schemes, for the variable v_ε^n is observed that if $v_\varepsilon^0 > 0$ then $v_\varepsilon^n > 0$ for all *n*.
- -F *^ε* : Truncation of ^s*−***¹**.
- $\blacktriangleright \lambda_{\varepsilon}$: Truncation of s.
- **Λ***ε*: Constant by elements matrix (key for the energy-stability of scheme **UV**).
- \blacktriangleright π^h : Lagrange interpolator.
- \blacktriangleright (\cdot , *·***)**^h: Mass lumping.

Main assumptions on the space discretization

- ▶ For the scheme UV are required right angled simplices.
- For the schemes UV and US, U_h is approximated by \mathbb{P}_1 -continuous FE.
- -For all schemes, V_h , Σ_h , Z_h , W_h are approximated by \mathbb{P}_k -continuous FE, $k \geq 1$.

 \blacktriangleright There are initial conditions for which **UZSW** is not energy stable with respect to the energy

Scheme UV

Time step n: Given
$$
(u_{\varepsilon}^{n-1}, v_{\varepsilon}^{n-1}) \in U_h \times V_h
$$
, compute $(u_{\varepsilon}^n, v_{\varepsilon}^n) \in U_h \times V_h$ s.t.
\n
$$
\begin{cases}\n(\delta_t u_{\varepsilon}^n, \bar{u})^h + (\nabla u_{\varepsilon}^n, \nabla \bar{u}) + (\Lambda_{\varepsilon}(u_{\varepsilon}^n) \nabla v_{\varepsilon}^n, \nabla \bar{u}) = 0, \quad \forall \bar{u} \in U_h, \\
(\delta_t v_{\varepsilon}^n, \bar{v}) + (\Lambda_h v_{\varepsilon}^n, \bar{v}) - (u_{\varepsilon}^n, \bar{v}) = 0, \quad \forall \bar{v} \in V_h.\n\end{cases}
$$

Scheme US

Time step n: Given
$$
(u_{\varepsilon}^{n-1}, \sigma_{\varepsilon}^{n-1}) \in U_h \times \Sigma_h
$$
, compute $(u_{\varepsilon}^n, \sigma_{\varepsilon}^n) \in U_h \times \Sigma_h$ s.t.

 $RE_e(u_\varepsilon^n, v_\varepsilon^n) := \delta_t \mathcal{E}_e(u^n, v^n) + 4$ \mathbb{R}^2 **Ω** $|\nabla \sqrt{[u^n]_+}|^2} dx + ||\Delta_h v^n||_0^2 + ||\nabla v^n||_0^2 \leq 0.$

- For **UV** and **US**, **[**un *^ε* **]***[−] →* **0** when *ε →* **0**, while for **UZSW** this behavior is not observed. Finally, for **BEUV** negative values (greater than the obtained in **UV** and **US**) for the minimum of u^n in some times $t_n > 0$ are observed.

Scheme UZSW

Time step n: Given $(u_{\varepsilon}^{n-1}, \sigma_{\varepsilon}^{n-1}, w_{\varepsilon}^{n-1}) \in U_h \times \Sigma_h \times W_h$, compute $(u_{\varepsilon}^n, z_{\varepsilon}^n, \sigma_{\varepsilon}^n, w_{\varepsilon}^n) \in U_h \times Z_h \times \Sigma_h \times W_h$ s.t.

 $(\delta_t u_\varepsilon^n, \bar{z}) + (\lambda_\varepsilon(u_\varepsilon^{n-1}) \nabla z_\varepsilon^n, \nabla \bar{z}) = - (u_\varepsilon^{n-1} \sigma_\varepsilon^n, \nabla \bar{z}), \ \ \forall \bar{z} \in Z_h,$ $(\delta_t \sigma^n_{\varepsilon}, \bar{\sigma}) + (B_h \sigma^n_{\varepsilon}, \bar{\sigma}) = (u^{n-1}_{\varepsilon} \nabla z^n_{\varepsilon}, \bar{\sigma}), \ \ \forall \bar{\sigma} \in \Sigma_h,$ $(Z_{\varepsilon}^{n}, \bar{u}) = 2(w_{\varepsilon}^{n}H_{\varepsilon}'(\mu_{\varepsilon}^{n-1}), \bar{u}), \forall \bar{u} \in U_{h}.$ $(\delta_t w_\varepsilon^{n}, \bar{w}) = (H'_\varepsilon(u_\varepsilon^{n-1})\delta_t u_\varepsilon^{n}, \bar{w}), \quad \forall \bar{w} \in W_h,$

[1] T. Cieslak, P. Lauren, C. Morales-Rodrigo. (2008) Global existence and convergence to steady states in a chemorepulsion system. [2] F. Guillén-González, M.A. Rodríguez-Bellido, D.A. Rueda-Gómez. *Unconditionally* energy stable fully discrete schemes for a chemo-repulsion model. (Preprint).

Main Theoretical results

- Well-posedness of these numerical schemes.
- Unconditional energy-stability (for modified energies) and mass-conservation of the schemes. In fact, the following discrete energy laws hold:

 $\boldsymbol{\delta_t}$ $\left((F_{\varepsilon}(u_{\varepsilon}^n), 1)^h + \right)$ **1 2** $\|\nabla v_{\varepsilon}^n\|_0^2$ $\int_{0}^{1} + \varepsilon \|\nabla u_{\varepsilon}^{n}\|_{0}^{2} + \|\Delta_{h} v_{\varepsilon}^{n}\|_{0}^{2} + \|\nabla v_{\varepsilon}^{n}\|_{0}^{2} \leq 0,$ (UV) $\boldsymbol{\delta_t}$ $\left((F_{\varepsilon}(u_{\varepsilon}^n), 1)^h + \cdots\right)$ **1 2** $\|\sigma_{\varepsilon}^n\|_0^2$ \int_0^{∞} + $\varepsilon \|\nabla \pi^{h}(F'_{\varepsilon}(u''_{\varepsilon}))\|_0^2 d + \|\sigma_{\varepsilon}^{n}\|_1^2 \leq 0$, (US) $\boldsymbol{\delta_t}$ $(||w_{\varepsilon}^{n}||_{0}^{2} +$ **1 2** $\|\sigma_{\varepsilon}^n\|_0^2$ \int + $\varepsilon \|\nabla z_{\varepsilon}^{n}\|_{0}^{2}$ + $\|\sigma_{\varepsilon}^{n}\|_{1}^{2} \leq 0$, (UZSW).

- \blacktriangleright Uniform in time energy estimates.
- Approximated positivity of u_{ε}^n and v_{ε}^n for schemes UV and US, when $\varepsilon \to 0$.

Main Numerical results

$$
\mathcal{E}_e(u,v) := \int_{\Omega} u_+(\ln u_+ - 1) \, dx + \frac{1}{2} ||\nabla v||_0^2,
$$

SEMA

Figure: $E_e(u_\varepsilon^n, v_\varepsilon^n)$ of UZSW.

- ▶ The scheme US has convergence problems with the linear iterative method, which are overcome considering thinner meshes.
- - \blacktriangleright **UV** and **US** have decreasing energy $\mathcal{E}_e(u, v)$. In fact, it holds

Figure: Energy $\mathcal{E}_e(u^n, v^n)$ and $RE_e(u^n, v^n)$ of UV and US.

The scheme **BEUV** (the classical backward Euler for model (1)) has decreasing in time energy $\mathcal{E}_e(u, v)$. However, for some cases, the discrete energy inequality $RE_e(u^n, v^n) \leq 0$ is not satisfied.

Figure: $RE_e(u_\varepsilon^n, v_\varepsilon^n)$ of **BEUV**.

Figure: Minimum values of u_{ε}^n computed with UV, US and UZSW respectively.

 $\int (\delta_t u^n_{\varepsilon}, \bar{u})^h + (\lambda_{\varepsilon}(u^n_{\varepsilon}) \nabla \pi^h(F'_{\varepsilon}(u^n_{\varepsilon})), \nabla \bar{u}) = -(\lambda_{\varepsilon}(u^n_{\varepsilon}) \sigma^n_{\varepsilon}, \nabla \bar{u}), \ \forall \bar{u} \in U_h,$ $(\delta_t \sigma_{\varepsilon}^n, \bar{\sigma}) + (B_h \sigma_{\varepsilon}^n, \bar{\sigma}) = (\lambda_{\varepsilon}(u_{\varepsilon}^n) \nabla \pi^h(F_{\varepsilon}'(u_{\varepsilon}^n)), \bar{\sigma}), \ \ \forall \bar{\sigma} \in \Sigma_h.$ Here, the auxiliary variable σ_{ε}^n try to approximate ∇v_{ε}^n .

References

Acknowledgements

▶ The authors have been partially supported by MINECO grant MTM2015-69875-P (Ministerio de Economía y Competitividad, Spain) with the participation of FEDER. The third author has also been supported by VIE of UIS.