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Evolutionary Algorithms

Evolutionary Algorithms (alternatively also called 
Evolutionary Computation) are based on the use of 
Darwinian notions of  inheritance and natural selection in 
a computationally useful form.

They use evolutionary processes to solve difficult 
computational problems creating good solution candidates 
in an automatic way.

They are search and optimisation tools based on stochastics 
approaches.



Genotype versus Phenotype

Evolutionary Algorithms: Natural Evolution



The success of EAs has been proved in a variety of 
applications, including problems that can hardly be solved 
through traditional optimisation methods.

EAs may equally handle single and multi-objective which are 
likely to involve more than one discipline. 

EAs  only require evaluation of the function in search space 
points, the convergence is not affected by the continuity 
or differentiability of the function to be optimised in the 
applications

Evolutionary Algorithms



Among EAs & Metaheuristics, the following algorithms are 
included:

- Genetic Algorithms (GAs)
- Evolution Strategies (ES)
- Differential Evolution (DE)
- Genetic Programming (GP)
- Particle Swarm Optimization (PSO)
- Others (Estimation of Distribution Algorithms EDAs, Ant

Colony Optimization ACO, etc.) …

Evolutionary Algorithms & Metaheuristics
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In engineering optimising a problem with more than one
criteria is a frequent necessity.

There are functions in conflict, where the improvement in one
criteria implies the worsening in another objective.

There is not only a single optimal solution, but a set of optimal
solutions called Pareto frontier.

With this set of solutions, is the designer or engineer mission,
to choose the most suitable solution according to her or his
requirements and preferences.

Multiobjective Optimization



The Italian economist Vilfredo Pareto (1848-1923),

postulated the efficient mode of resource allocation, 
which bears his name: 

‘Resources are allocated efficiently in the Pareto sense 
when unable to improve the welfare of any person 
without worsening the other'. 

Pareto Domination / Pareto Frontier



A x solution is non-dominated if:

1) The x solution is worse than y in all the criteria. For two
minimised criteria, it means that x is less or equal than y
in both.

2) The x solution is strictly better than y at least in one
criterium. For two minimised criteria, it means that x is
less than y in at least one objective.

In the set of all possible solutions, the non-dominated ones,
constitute the Pareto Frontier.

Pareto Domination / Pareto Frontier



From: K. Deb “Multi-objective optimization using Evolutionary Algorithms”, 2001, Wiley.

Multiobjective Optimization



Among the disadvantages of the traditional multiobjective methods respect to
the multiobjective evolutionary algorithms we have the followings [Deb,
EUROGEN99]:

Many times should be applied a traditional multiobjective algorithm in order to
obtain multiple non-dominated solutions, because of only one solution is found
each application.

They can require some information about the handled problem -for example, the
method of pondering coefficients in order to determine the values of the
parameters-,

They can be sensitive to the Pareto front shape, not capable to find solutions
located in certain zones like non-convex ones.

The spread of the Pareto solutions found depends on the efficiency of the mono-
criteria optimizer used.

They are not appropriate in problems with stochasticities or uncertainties.

They can not handle problems with discrete domain.

Classical Methods Disadvantages



A multicriteria algorithm should be capable to satisfy two requeriments
in order to obtain appropriate results:

1. To conduct the search towards the Pareto Frontier;

2. To maintain the diversity of the population along this front.

Evolutionary Multiobjective Algorithms



Hypervolume / S-metric



We can classify EMO in three groups:

Dominance based selection EMO: Use the concept of Pareto
dominance as the basis of their selection (e.g., NSGA2,
SPEA2), based on the suggestion of David Goldberg in 1989
proposing the use of the Pareto dominance criterion to
perform multiobjective optimization.

Indicator based selection EMO: Based on some unary indicator to
guide the search. The main indicator used is the hypervolume
indicator, as in e.g., SMS-EMOEA, HypE.

Decomposition/Aggregated based selection EMO Methods based
on decomposition of the search space, optimizing a set of
scalarizing functions in parallel (MOEA/D, Global WASF-GA).

Evolutionary Multiobjective Algorithms



Test Cases

Three Test Cases have been selected and solved with NSGA2 (all of them are biobjective,
both minimizing functions), each representing one of the difficulties that classical
optimization methods have, and which evolutionary multiobjective optimization ones can
surpass:

1. Continous Non-Convex Pareto Front: from D. Van Veldhuizen and Gary
B. Lamont. “Multiobjective Evolutionary Algorithm Test Suites”, Proceedings of the 1999
ACM Symposium on Applied Computing, pages 351-357, San Antonio, Texas,. ACM (1999).

2. Discontinous Pareto Front: from C.A. Coello Coello, “Multiobjective
Optimization using a Micro-Genetic Algorithm”, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2001), San Francisco, Morgan Kaufmann.

3. Global and Local Pareto Front: from K. Deb, “Multi-Objective Genetic
Algorithms: Problem Difficulties and Constructions of Test Problems”, Evolutionary
Computation 7-3 (1999) pp. 205-230. MIT Press.



Continuous Non-Convex Pareto Front: from D. Van Veldhuizen and Gary B.
Lamont. “Multiobjective Evolutionary Algorithm Test Suites”, Proceedings of the 1999 ACM
Symposium on Applied Computing, pages 351-357, San Antonio, Texas,. ACM . (1999).

Test Cases



Discontinous Pareto Front: from C.A. Coello Coello, “Multiobjective
Optimization using a Micro-Genetic Algorithm”, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2001), San Francisco, Morgan Kaufmann.

Test Cases



Global and Local Pareto Front: from K. Deb, “Multi-Objective Genetic
Algorithms: Problem Difficulties and Constructions of Test Problems”, Evolutionary
Computation 7-3 (1999) pp. 205-230. MIT Press.

Test Cases
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From: R. Kicinger, 2006 – Evolutionary Design

Evolutionary Design
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Introduction: Problem handled



Using the C/C++ language, the following computational
implementation are developed:

• Evaluator: Frame matrix calculator Program (direct
stiffness method), for Bar Structures.

• Optimizer: Evolutionary Algorithms (various
strategies of multiobjective optimization algorithms).

• Objective Functions: Definition (constrained weight
and number of different cross-section types).

Structural Problem



Genotype versus Phenotype
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Chromosome



1. The constrained weight, due to minimize the acquisition cost of
raw material of the metallic frame; the following constraints are
applied:

- Stresses of the bars (usual value for steel structures is the yield 
limit stress, of 2600 kgp/cm2), for each bar

- Compressive slenderness limit, (buckling effect) compression
lambda lower than 200 (limit is dependendent on national codes),
for each bar

- Displacements of joints or middle points of bars (at each degree 
of freedom) in certain points, nodes of the beams

 co lim  0

  lim 0

u uco lim  0

Objective Function I



Resulting the fitness function constrained weight the following:

where:
Ai = area of cross-section i
pi = density of bar i
li = length of bar i
k = constant that regulates the cocient between constraint and weight.
violj = for each of the violated constraints, is the cocient between the violated
value (stress, displacement or slenderness) and its reference limit.
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Objective Function I



The second fitness function is the minimization of number of different cross
section types, and its calculation of the quantity is done by successive
comparisons of the existing cross-section types in a certain structure.

This factor has been related recently with the structure life cost cycle in Sarma
and Adeli (2002), and also in Liu et al (2003).

It corresponds to a constructive requirement, helping a better quality control
during the execution of the building site.

Objective Function II



Fixed Supports

Based on (D. Greiner, Emperador, Winter;
Computer Methods in Applied Mechanics and Engineering, 

Elsevier, 2004)

Computational domain, boundary conditions, loadings and design variable set groupings:

Figure includes elements and nodes numbering, 
and punctual loads in tons. 

Every beam supports a uniform load of 39,945 N/m. 

Maximum vertical displacement in each beam is 
l/300 = 1.867 cm. 

Test Case Y



• IPE cross section types for beams (set between IPE-080 and IPE-500)
• HEB for columns (set between HEB100 and HEB-450) 
• Admissible stresses of 2.2 and 2.0 T/cm2 for beams and columns, 

respectively.
• Density and elasticity modulus E (steel) are: 7.85 T/m3 and 2100 T/cm2.
• Based on a continuous variable reference test problem of S. Hernández. 
• The span is 5.6 m and the height of columns is 2.80 m.

55 members
Search Space: 1655 = 24x55 = 2220 =1,7.1066

Test Case Y



Experimental Cases

Thirty independent Executions per case 
Three population sizes: 50, 100 and 200 individuals
Uniform crossover; Rate= 100%
Uniform Mutation; 
Four mutation rates: 0.4%, 0.8%, 1.5%, 3% 
Two Codifications: Binary and Gray
Case Y (200.000 evaluations per case)



Whole number of evaluated structures Test Case Y:
30 x 3 x 4 x 2 x 200.000  = 144 million ≈ 14.4.107

Search Space Dimension 1,7.1066 structures

Observable Universe Mass: 3.1055 g. 

(more stars in the universe than grains of sand in Earth beaches:                              
100.000 millons of stars in each of the 100.000 millons of galaxies)

Test case Y : we explore 2.5 mg  over whole universe mass !!!

Experimental Cases



Test Case II: Pareto Front

D. Greiner, Emperador, Winter; Computer Methods in Applied Mechanics and Engineering, Elsevier, 2004



Results Test Case Y (Discrete Optimization)

D. Greiner, Emperador, Winter; Computer Methods in Applied Mechanics and Engineering, Elsevier, 2004



Real model:

GA Optimum Solution

Weight = 9551.75 kgp.

Constraint =0.13 kgp

Bar 
Num 

Area 1       
GA Ideal 

Model 
P=9327 kgp 

Area 2      
GA Real 
Model 

P=9551 kgp

Area 2   
Real Model 

Stress 
(kgp/cm2) 

Area 2   
Ideal Model 

Stress 
(kgp/cm2) 

Central 
Deflection  

Área 2 (cm) 

1 56.84        57.00       2196.95 2175.35 0.7417  

2 55.04   55.30       2198.70 2177.78 0.7381  

3 54.94        55.07       2199.16 2177.94 0.8482  

4 52.41        52.79       2198.40 2177.07 0.8583  

5 53.28        53.78       2197.67 2175.43 0.9640  

6 51.64        51.99       2196.55 2176.74 0.6069  

7 51.21        51.60       2199.58 2179.79 0.6310  

8 50.47        51.00   2198.30 2178.31 0.6241  

9 50.50        50.48       2199.53 2178.76 0.6518  

10 52.68        52.82       2199.82 2177.34 0.5513  

11 52.15        52.41       2198.07 2177.87 0.6218  

12 51.48        51.81       2199.88 2179.90 0.6365  

13 51.23   51.53       2198.83 2178.40 0.6515  

14 50.89        51.06   2199.61 2178.74 0.6615  

15 51.17        51.26       2198.53 2177.39 0.6737  

16 52.92    53.15       2200.02 2179.89 0.5817  

17 51.29        51.81       2199.70 2179.92 0.6321  

18 51.40        51.96       2199.94 2179.50 0.6153  

19 50.42        50.98       2199.38 2178.51 0.6596  

20 51.13        51.93       2199.65 2177.56 0.6029  

21 49.74        49.98       2198.35 2174.99 0.8627  

22 48.67        48.65       2199.79 2177.04 0.8498  

23 49.13        49.67       2199.80 2176.98 0.8942  

24 49.19        49.79       2199.04 2176.76 0.8491  

25 51.11        51.95       2199.33 2176.83 0.9390 

 

Bar 
Num 

Area 1 GA  
Ideal Model 
P=9327 kgp 

Area 2 GA  
Real Model 
P=9551 kgp 

Stress Area 2 
Real Model 
 (kgp/cm2) 

Stress Area 2 
Ideal Model 
(kgp/cm2) 

26 55.3 55.21          1999.85 1971.81 
27 58.54 62.10          1999.77 1972.09 
28 60.0 59.68          2000.02 1977.21 
29 41.12 44.58          1999.28 1976.78 
30 67.3 65.69          1999.82 1982.28 
31 81.84 83.19          1999.21 1976.67 
32 70.1 72.41          1998.46 1936.64 
33 57.44 58.40          1999.87 1944.16 
34 40.6 44.57          1998.99 1835.00 
35 25.8 31.87          1997.68 1710.05 
36 73.98 78.93          1999.61 1948.29 
37 63.4 67.09          1999.23 1882.44 
38 50.2 54.37          1998.84 1844.33 
39 37.2 42.49          1999.29 1759.91 
40 23.1 30.38          1988.77 1552.85 
41 75.5 79.52          1999.68 1960.35 
42 64.1 67.57          1999.76 1883.05 
43 51.2 54.73          1998.10 1864.79 
44 38.6 42.95          1998.82 1796.33 
45 23.4 30.43          1998.30 1578.02 
46 73.7 80.69          1999.58 1939.92 
47 63.0 68.20          1999.16 1838.92 
48 49.8 55.47          1999.42 1801.80 
49 39.2 43.40          1998.19 1799.99 
50 23.0 30.48          1988.96 1513.50 
51 69.5 69.55          1951.18 1928.40 
52 70.2 73.82          1999.26 1976.64 
53 71.9 71.35          1978.05 1959.82 
54 52.6 54.12          1985.42 1966.90 
55 76.5 72.81 1999.07 1983.70 

 

Results Test Case Y (Discrete Optimization)



Comparing the Discrete Solution versus the Continous Solution approximated to the Discrete

Test Case Y

Ideal Model

Real Model

Contin. Area  GA
(P=9327 kgp.)

Approx. Cross-
Section

(P=10031 kgp.)

Discrete Cross-Section
(P=9852 kgp.)

Contin. Area  GA
 (P=9551.75 kgp.)

Approx. Cross-
Section

(P=10343.78 kgp.)

Discrete Cross-Section
(P=10127.3 kgp.)

This results emphazise the need of a discrete optimizer

Results Test Cases X & Y (Discussion)

D. Greiner, Emperador, Winter; Computer Methods in Applied Mechanics and Engineering, Elsevier, 2004



Gray Coding

Test Case Y

Single GA NSGAII

SPEA2 DENSEA

Helper Objectives - Multiobjectivization

D. Greiner, Emperador, Galvan, Winter; LNCS, 
Evolutionary Multicriterion Optimization, Springer, 2007



CoSAR for Reliability Structural Optimization

D. Greiner, P. Hajela, 

Structural and Multidisciplinary

Optimization, Springer, 2012
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Objective: To design optimally a safety / protection system, 
minimizing simultaneously:

1. The material cost of the facilities (obtained by summing
the individual costs of the installed elements)

2. The unavailability of the system (depending on the
unavailability of the elements considered in the design).

Both are opposing functions, where the diminishing of one , 
implies the increase of the other. It is required a 
multicriteria optimization. 

Safety Systems Optimum Design



Safety Systems Optimum Design

D. Greiner, Galvan, Winter; LNCS, 
Evolutionary Multicriterion Optimization, Springer, 2003



Pareto Front

Safety Systems Optimum Design

D. Greiner, Galvan, Winter; LNCS, 
Evolutionary Multicriterion Optimization, Springer, 2003



Safety Systems Optimum Design

B. Galvan, G. Winter, D. Greiner, D. Salazar
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Slope Stability Analysis



• The slip surface with lower factor of safety determines the critical 
failure surface of a slope; e.g. in case of a circular surface:

Slope Stability Analysis



NSGA2 optimization;

Each red cross 
represents an 

optimum design 
corresponding to the 
minimum factor of 

safety for this height 

(associated with its 
critical surface - circle 
center coordinates & 

radius value). 

D. Greiner, F. Chirino, B. Galván, JM. Emperador, G. Winter; ECCOMAS 2012

Slope Stability Analysis - Results
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The selected objective is to minimize the fitness function (FF) as:

IL values of the candidate solution; ILR values taken as reference; for
each (j) octave band or one-third octave band centre frequency.

Shape optimum design considering various frequencies is more
accurate with respect to the real sound propagation problem, and also
allows surpassing the possible problems associated with one single
frequency optimization, that could guide to false IL values due to
frequencies near to spurious eigenfrequencies associated to the BEM
evaluation.

  
NFreq

j

R
jj ILILFF 2

Noise Barrier Design Optimization

D. Greiner, JJ. Aznarez, O. Maeso, G. Winter, 

Advances in Engineering Software, 2010



Noise Barrier Design Optimization
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D. Greiner, JJ. Aznarez, O. Maeso, G. Winter, 

Advances in Engineering Software, 2010

Noise Barrier Multi-objective optimization Y-Shape



General Noise Barrier Shapes
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General Noise Barrier Shapes
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