

A High Resolution Diagnostic Wind Model. Application to Downscaling Mesoscale Model Results for Wind Forecasting

University Institute for Intelligent Systems and Numerical Applications in Engineering

6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) 7th European Conference on Computational Fluid Dynamics

ECCM-ECFD 2017 – June, 2018, Glasgow

G. Montero, R. Montenegro, J.M. Escobar, E. Rodríguez, A. Oliver, A. Suárez

http://www.siani.es/

Overview

References

L. Ferragut ^{a,*}, R. Montenegro^b, G. Montero^b, E. Rodríguez^b, M.I. Asensio^a, J.M. Escobar^b

Journal of Wind Engineering and Industrial Aerodynamics 74-76 (1998) 249-261

A 3-D diagnostic model for wind field adjustment

G. Montero^{a,*}, R. Montenegro^a, J.M. Escobar^b

Advances in Engineering Software 36 (2005) 3-10

www.elsevier.com/locate/advengsoft

Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model

G. Montero*, E. Rodríguez, R. Montenegro, J.M. Escobar, J.M. González-Yuste

Pure Appl. Geophys. 172 (2015), 109-120

Pure and Applied Geophysics

Wind Forecasting Based on the HARMONIE Model and Adaptive Finite Elements

ALBERT OLIVER,¹ EDUARDO RODRÍGUEZ,¹ JOSÉ MARÍA ESCOBAR,¹ GUSTAVO MONTERO,¹ MARIANO HORTAL,² JAVIER CALVO,² JOSÉ MANUEL CASCÓN,³ and RAFAEL MONTENEGRO¹

Objective:

- Find the velocity field $\vec{u}(\tilde{u}, \tilde{v}, \tilde{w})$ that adjusts to $\vec{v}_0(u_0, v_0, w_0)$ verifying:
- Incompressibility condition in the domain and No flow-through condition on the terrain

 $\nabla \cdot \vec{u} = 0 \quad \text{in } \Omega$ $\vec{n} \cdot \vec{u} = 0 \quad \text{on } \Gamma_b$

Let state the least square problem:

$$E(\widetilde{u},\widetilde{v},\widetilde{w}) = \int_{\Omega} \left[\alpha_1^2 \left((\widetilde{u} - u_0)^2 + (\widetilde{v} - v_0)^2 \right) + \alpha_2^2 (\widetilde{w} - w_0)^2 \right] d\Omega$$
$$\alpha = \frac{\alpha_1}{\alpha_2}$$

Gauss Precision Moduli

They allow horizontal (α_1) and vertical (α_2) adjustment of wind velocity components

- $\alpha >> 1$ adjustment in vertical direction is predominant
- α << 1 adjustment in horizontal direction is predominant
 - $\alpha \rightarrow \infty$ pure vertical adjustment
 - $\alpha \rightarrow 0$ pure horizontal adjustment

Wind Field Modeling Mass Consistent Wind Model

Statement of the problem

To find $\vec{v} \in K$ such that,

$$E(\vec{v}) = \min_{\vec{u}\in K} E(\vec{u}), \quad K = \left\{ \vec{u}; \vec{\nabla} \cdot \vec{u} = 0, \ \vec{n} \cdot \vec{u}|_{\Gamma_b} = 0 \right\}$$

This problem is equivalent to find the saddle ${\rm point}\,(\vec{v},\phi)$ of the Lagrangian

$$L(\vec{u},\lambda) = E(\vec{u}) + \int_{\Omega} \lambda \vec{\nabla} \cdot \vec{u} \, d\Omega$$

with $L(\vec{v}, \lambda) \leq L(\vec{v}, \phi) \leq L(\vec{u}, \phi)$

The solution produces the Euler-Lagrange equations

$$\vec{v} = \vec{v}_0 + T \vec{\nabla} \phi$$
 where $T = (T_h, T_h, T_v)$ $T_h = \frac{1}{2\alpha_1^2}$, $T_v = \frac{1}{2\alpha_2^2}$

Substituting the Euler-Lagrange equations in

$$ec{
abla} \cdot ec{u} = 0$$
 in Ω
 $ec{n} \cdot ec{u} = 0$ on Γ_b

it yields the governing equations,

$$egin{aligned} -ec{
abla} \cdot (Tec{
abla}\phi) &= ec{
abla} \cdot ec{v}_0 & & ext{in } \Omega \ \phi &= 0 & & ext{on } \Gamma_a \ ec{n} \cdot Tec{
abla}\phi &= -ec{n} \cdot ec{v}_0 & & ext{on } \Gamma_b \end{aligned}$$

If Gauss Precision Moduli are constant,

$$\begin{split} \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \alpha^2 \frac{\partial^2 \phi}{\partial z^2} &= -\frac{1}{T_h} \left(\frac{\partial u_0}{\partial x} + \frac{\partial v_0}{\partial y} + \frac{\partial w_0}{\partial z} \right) & \text{ in } \Omega \\ \phi &= 0 & \text{ on } \Gamma_a \\ \vec{n} \cdot T \vec{\nabla} \phi &= -\vec{n} \cdot \vec{v}_0 & \text{ on } \Gamma_b \end{split}$$

Once the Lagrange Multiplier is obtained, the wind velocity is computed with the Euler-Lagrange equations,

$$\vec{v} = \vec{v}_0 + T\vec{\nabla}\phi$$

Wind Field Modeling Updating of the incomplete Cholesky factorization

The linear system of equations are dependent on $\varepsilon = \alpha^2$,

$$A_{\varepsilon}x_{\varepsilon} = b_{\varepsilon}$$

A suitable preconditioning technique should be applied for an efficient conjugate gradient iteration, in the particular case,

$$A_{\varepsilon} = M + \varepsilon N$$

So the FEM element matrices are of the form,

$$\left\{\mathbf{A}^{e}\right\}_{ij} = \left\{\mathbf{M}^{e}\right\}_{ij} + \varepsilon \left\{\mathbf{N}^{e}\right\}_{ij}$$
$$A_{\varepsilon} = (m_{ij}) + \varepsilon (n_{ij}) = \begin{pmatrix} m_{11} + \varepsilon n_{11} & (f_{1M} + \varepsilon f_{1N})^{T} \\ f_{1M} + \varepsilon f_{1N} & M_{2} + \varepsilon N_{2} \end{pmatrix}$$

where f_{1M}, f_{1N} are $(n-1) \times 1$ column matrices and $M_2, N_2, (n-1) \times (n-1)$ matrices. $A_{\varepsilon} = L_1 Z_1 L_1^T$

$$= \begin{pmatrix} m_{11} + \varepsilon n_{11} & \mathbf{0} \\ l_{1M} + \varepsilon l_{1N} & \mathbf{I} \end{pmatrix} \begin{pmatrix} (m_{11} + \varepsilon n_{11})^{-1} & \mathbf{0} \\ \mathbf{0} & C_2 \end{pmatrix} \begin{pmatrix} m_{11} + \varepsilon n_{11} & (l_{1M} + \varepsilon l_{1N})^T \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

Finally,

$$A_{\varepsilon} \approx L_1 Z_1 L_1^T = L_1 L_2 Z_2 L_2^T L_1^T = (L_1 L_2 \cdots L_n) Z_n (L_1 L_2 \cdots L_n)^T$$

with Z_i diagonal, $z_{ij} = (m_{ij} + \varepsilon n_{ij})^{-1}, j = 1, ..., i$

icholA: Use ICHOL (A_{ε_0}) for all the iterations

icholD:
$$C_2 = \varepsilon D_2 + M_2 - \frac{1}{m_{11}} l_{1M} l_{1M}^T$$

icholN: $C_2 = \varepsilon N_2 + M_2 - \frac{1}{m_{11}} l_{1M} l_{1M}^T$

Updating incomplete factorization preconditioners for shifted linear systems arising in a wind model

A. Suárez, H. Sarmiento, E. Flórez, M.D. García*, G. Montero

Construction of the observed wind

1. Horizontal interpolation:

Bilinear Lagrange interpolation from HARMONIE grid wind data

2. Vertical extrapolation (log wind profile):

Stability Classification of the Boundary Layer

(Zilitinkevich, S.S., Tyuryakov, S.A., Troitskaya, Y.I., Mareev, E.A., 2012.)

Table 1: Stability Classification of the Boundary Layer.							
Boundary Layer Stability	Surface	Squared BL		Free Atmosphere	Ratio		
	Buoyancy	Brunt-Väisälä		Brunt-Väisälä	$\mathbf{V}_*/\mathbf{W}_*$		
	$Flux, B_s$	Freq	$uency, N_{h-0}^2$	Frequency, N_{2h-h}	·		
	$(m^2 s^{-3})$	(s^{-1})	Jou	rnal of Wind Engineering & Industrial Aerodynamics 174 (2018) 411-423			
LS (Long-lived Stable)	< 0	≥ 0		Contents lists available at ScienceDirect	Wind Engineering &		
NS (Nocturnal Stable)	< 0	≥ 0	Journal of V	Vind Engineering & Industrial Aerodynamics	5		
TN (Truly Neutral)	= 0	≥ 0	ELSEVIER	journal homepage: www.elsevier.com/locate/jweia			
CN (Conditionally Neutral)	≥ 0	≥ 0	Optimisation technique for	improving wind downscaling results by			
PCL (Purely Convective Layer)	> 0	< 0	estimating roughness parameters				
MCL (Mechanically Convective Layer)	> 0	< 0	Gustavo Montero ^a , Eduardo Rodrí Rafael Montenegro ^a	guez ^a , Albert Oliver ^{a,*} , Javier Calvo ^b , José M. Escobar ^a ,			

Wind Field Modeling Mass Consistent Wind Model

Vertical extrapolation (log wind profile)

,

Neutral/Stable Boundary Layer

Convective

Boundary

Layer

$$u = \frac{u_*}{k} \left(\ln \frac{\zeta}{\zeta_0} + b_1 \left(\zeta - \zeta_0 \right) + b_2 \left(\zeta - \zeta_0 \right)^2 + b_3 \left(\zeta - \zeta_0 \right)^3 \right),$$

$$v = -\frac{u_*}{k} \delta \left(-\left(\zeta - \zeta_0 \right) \ln \left(\zeta - \zeta_0 \right) + a_1 \left(\zeta - \zeta_0 \right) + a_2 \left(\zeta - \zeta_0 \right)^2 + a_3 \left(\zeta - \zeta_0 \right)^3 \right),$$

$$\zeta = \left(z - \frac{Q}{k} \right) h, \qquad \zeta_0 = \frac{Q}{20} h, \qquad \delta = fh/(ku_*)$$

$$|u| = \begin{cases} \frac{u_*}{k} \ln \frac{z - d}{z_0} & z_0 + d < z < \frac{\zeta_u |L|}{k} + d, \\ \frac{u_*}{k} \left[a_u + C_u \left(\frac{k(z - d)}{L} \right)^{-\frac{1}{3}} + \ln \frac{-L}{kz_0} \right] & \frac{\zeta_u |L|}{k} + d \le z \le h, \end{cases}$$

$$\sin \alpha = \sin \left(\alpha_s - \alpha_{h-0} \right) = \frac{a_\alpha}{k} \left(\frac{hk}{|L|} \right)^{-\frac{1}{3}} \frac{u_*}{|\overline{u}|} \operatorname{sign} f,$$

$$u = \begin{bmatrix} u - \frac{-L}{2} \end{bmatrix}$$

$$\left|\overline{u}\right| = \left|u\right|_{h=0} = \frac{u_*}{k} \left[a_u + \ln\frac{-L}{kz_0}\right]$$

Wind Field Modeling SIOSE Land Cover Database

Let l_c be a $n_p \times 1$ vector containing the land cover information of all the points of the studied region, M a $n_p \times 40$ matrix which entries per row are the proportions of basic land covers at each point, and c a 40×1 vector with the basic land cover codes.

$$_{c} = Mc = \begin{pmatrix} m_{1,ACM} & m_{1,ACU} & \dots & m_{1,ZQM} \\ m_{2,ACM} & m_{2,ACU} & \dots & m_{2,ZQM} \\ \dots & \dots & \dots & \dots \\ m_{n_{p},ACM} & m_{n_{p},ACU} & \dots & m_{n_{p},ZQM} \end{pmatrix} \begin{pmatrix} ACM \\ ACU \\ \dots \\ ZQM \end{pmatrix}$$

such that, for each row i of M, it is verified,

$$\sum_{j=1}^{40} m_{i,j} = 1$$

$$z_0 = \prod_{j=1}^{n_b} z_{0j}^{m_{ij}}$$

Displacement height mean

$$d = \sqrt{\sum_{j=1}^{n_b} m_{ij} d_j^2}$$

 n_b : number of basic coverages m_{ij} : fraction of the basic coverage j at the point n_i

Wind Field Modeling SIOSE Land Cover *z*₀ and *d*

Code	Land Cover	$z_0(cm)$	Z0min [—] Z0max	d (cm)	d _{min} -d _{max}
ACM	Sea Cliff	$5^{[1]}$	5 ^[2] -19 ^[2]	$5700^{[2]}$	330 ^[2] -8500 ^[2]
ACU	Water Courses	$0.025^{[3]}$	$0.01^{[4]} - 1^{[5]}$	0 ^[6,47]	_
AEM	Sheet of Water. Reservoir	$0.025^{[4]}$	$0.01^{[4]} - 0.5^{[7]}$	$0^{[6,47]}$	_
AES	Estuaries	$0.02^{[8]}$	$0.01^{[4]} - 1^{[5]}$	0 ^[6,47]	_
ALC	Coastal Lagoons	0.5 ^[7]	$0.01^{[4]} - 1^{[5]}$	$0^{[6,47]}$	_
ALG	Sheet of Water. Lakes and Lagoons	$0.05^{[9]}$	$0.01^{[4]} - 0.5^{[7]}$	$0^{[6,47]}$	_
AMO	Seas y Oceans	$0.02^{[8]}$	0.01 ^[4] -3 ^[1]	$0^{[6,47]}$	_
ARR	Rocky Outcrops and Rocks	$0.5^{[5]}$	$0.03^{[10]} - 18^{[11]}$	3[6]	0 ^[6] -96 ^[6]
CCH	Screes	$10^{[1]}$	5 ^[12] -15 ^[13]	$60^{[14]}$	56 ^[14] -66 ^[14]
CLC	Quaternary lava flow	$2.86^{[15]}$	$0.13^{[15]} - 7.35^{[15]}$	15 ^[6]	0 ^[6] -40 ^[6]
CNF	Forest. Conifers	$128^{[16]}$	25 ^[17] -193 ^[18]	1310 ^[19]	$487^{[18]} - 2200^{[14]}$
CHA	Herbaceous crops. Rice	$7.2^{[20]}$	$0.1^{[21]} - 11^{[20]}$	$85^{[20]}$	$10^{[20]} - 155^{[20]}$
CHL	Herbaceous crops. Different from Rice	$10^{[22]}$	$0.4^{[23]} - 74^{[24]}$	$25^{[23]}$	$10^{[23]} - 300^{[35]}$
EDF	Artificial Coverage. Building	150 ^[26]	$70^{[26]} - 370^{[24]}$	$1400^{[26]}$	$700^{[26]} - 1973^{[6]}$
FDC	Forest. Leafy. Deciduous	$100^{[28]}$	$18^{[28]} - 140^{[1]}$	$1180^{[29]}$	$300^{[29]} - 2160^{[29]}$
FDP	Forest. Leafy. Evergreen	72 ^[11]	$60^{[3]} - 265^{[30]}$	970 ^[29]	$300^{[29]} - 3100^{[26]}$
GNP	No Vegetation. Glaciers and Perpetual Snow	$0.1^{[5]}$	$0.001^{[31]} - 1.2^{[26]}$	1[6]	0 ^[6] -6 ^[6]

Wind Field Modeling SIOSE Land Cover *z*₀ and *d*

Code	Land Cover	$z_0(cm)$	Z _{0min} —Z _{0max}	d (cm)	d _{min} —d _{max}
HMA	Salt Marshes	$11^{[11]}$	$0.02^{[10]} - 17^{[10]}$	60 ^[6]	0 ^[6] -93 ^[6]
HPA	Wetlands	10 ^{[5}	$0.5^{[28]} - 55^{[11]}$	55 ^[6]	3 ^[6] -300 ^[6]
HSA	Continental Salines	$1^{[5]}$	$0.05^{[5]}-4^{[7]}$	5 ^[6]	0 ^[6] -22 ^[6]
HSM	Salines	$1^{[5]}$	$0.05^{[5]}-4^{[7]}$	5 ^[6]	$0^{[6]} - 22^{[6]}$
HTU	Peat bogs	3[5]	$0.05^{[5]} - 3^{[5]}$	16 ^[6]	0 ^[6] -16 ^[6]
LAA	Artificial Coverage. Artificial Sheet of Water	0.01 ^[5]	0.01 ^[5] -0.5 ^[7]	0 ^[5,47]	_
LFC	Woody Crops. Citrus Fruit Trees	31 ^[33]	3 ^[4] -40 ^[34]	300 ^[14]	0 ^[35] -400 ^[35]
LFN	Woody Crops. No Citrus Fruit Trees	25 ^[5]	3 ^[4] -100 ^[32]	92 ^[36]	0 ^[35] -400 ^[35]
LOC	Other Woody Crops	6.15 ^[37,6]	$3.69^{[37,6]} - 8.61^{[37,6]}$	33[37,6]	20 ^[37,6] -47 ^[37,6]
LOL	Olive Groves	48 ^[38]	25 ^[5] -61 ^[38]	267 ^[38]	200 ^[38] -300 ^[38]
LVI	Vineyards	20 ^[39]	8 ^[40] -55 ^[39]	75 ^[39]	$31^{[40]} - 140^{[41]}$
MTR	Scrubs	16 ^[28]	$1.6^{[28]} - 100^{[1]}$	480 ^[42]	90 ^[26] -710 ^[42]
OCT	Artificial Coverage. Other Buildings	50 ^[5]	6 ^[11] -100 ^[5]	400 ^[27]	$200^{[27]} - 1400^{[26]}$
PDA	No Vegetation. Beaches, Dunes and Sandy Areas	0.03 ^[5]	$0.01^{[43]} - 6^{[10]}$	O ^[6]	0 ^[6] -33 ^[6]
PRD	Crops. Meadows	3 ^[5]	$0.1^{[31]} - 10^{[5]}$	1.3[26]	$0.7^{[35]} - 3.5^{[26]}$
PST	Grassland	9 ^[31]	$0.1^{[31]} - 15^{[31]}$	$17.1^{[44]}$	$1.3^{[26]} - 66^{[35]}$
RMB	No Vegetation. Ravine	$0.12^{[45]}$	$0.03^{[4]} - 0.5^{[46]}$	0.5 ^[6]	0 ^[6] -3 ^[6]
SDN	No Vegetation. Bare Soil	$0.1^{[10]}$	$0.02^{[46]} - 4^{[11]}$	0.5 ^[6]	0 ^[6] -22 ^[6]
SNE	Artificial Coverage. Unbuilt Land	$0.03^{[10]}$	$0.02^{[46]} - 4^{[1]}$	O ^[6]	0 ^[6] -22 ^[6]
VAP	Artificial Coverage. Road, Parking or Unvegetated Pedestrian Areas	3[5]	0.35 ^[45] -50 ^[5]	$100^{[47,48]}$	$2^{[48]} - 250^{[48]}$
ZAU	Artificial Coverage. Artificial Green Area and Urban Trees	40 ^[4]	3 ^[10] -130 ^[24]	350 ^[47,48]	350 ^[26] -1400 ^[26]
ZEV	Artificial Coverage. Extraction or Waste Areas	10 ^[5]	$0.03^{[10]} - 18^{[11]}$	56 ^[6]	0 ^[6] -100 ^[6]
ZQM	No Vegetation. Burnt Areas	60 ^[5]	10 ^[5] -110 ^[10]	327 ^[6]	54 ^[6] -600 ^[6]

Wind Field Modeling Polygons of SIOSE Land Cover

Wind Field Modeling SIOSE z_o and d maps

Roughness length and displacement height of Gran Canaria Island (m)

Roughness length (z_0) map

Displacement height (d) map

Wind Field Modeling Estimation of Model Parameters

SIANI

Summer wind rose of Gran Canaria

Wind Rose of Gran Canaria at 10 m relating to the period from June 1 to September 30 of the year 2015.

Measurement stations

Code	Name	$x\left(m ight)$	$y\left(m ight)$	$z\left(m ight)$
C611E	Vega de San Mateo	442587.00	3094849.87	1712
C612F	Cruz de Tejeda	441111.20	3098128.27	1524
C619I	La Aldea de San Nicolás	420071.67	3097617.70	20
C619X	Agaete	429982.92	3108624.01	1t
C619Y	La Aldea	420598.02	3097574.90	28
C623I	S. Bartolomé de Tirajana, Cuevas del Pinar	440978.20	3089240.95	123(
C625O	S. Bartolomé de Tirajana, Lomo Pedro Alfonso	436499.77	3081522.42	816
C628B	La Aldea de San Nicolás, Tasarte	424210.25	3087335.04	328
C629I	Mogán, Puerto	424469.50	3077087.00	22
C629Q	Mogán, Puerto Rico	429927.60	3073056.56	20
C629X	Puerto de Mogán	424751.35	3077101.81	20
C639M	Maspalomas, C. Insular Turismo	443238.31	3070506.07	5^{ξ}
C639U	S. Bartolomé de Tirajana, El Matorral	455345.47	3076502.74	51
C648C	Agüimes	455325.70	3086483.97	316
C648N	Telde, Centro Forestal Doramas	454970.89	3095890.75	354
C649I	Gran Canaria, Aeropuerto	461658.52	3088640.43	34
C649R	Telde, Melenara	462854.84	3095804.64	19
C656V	Teror	446227.23	3105674.70	695
C659H	Polígono de San Cristobal	459130.00	3107201.82	65
C659M	Plaza de la Feria	458627.05	3109809.55	2ξ
C665T	Valleseco	444392.38	3104643.66	91(
C669B	Arucas	450225.76	3113015.52	96
C689E	Maspalomas	441057.23	3068075.14	3^{t}

Location in UTM zone 28N coordinates and height over the sea level of the 23 anemometers available in Gran Canaria.

Adaptive mesh

Domain dimensions: 12 km \times 28,5 km \times 3 km

44.970 tetrahedra 10.070 nodes

Local refinement:

- Measurement stations
- Shoreline
- Altimetry

Surface triangulation

Table 1: Selected wind episodes in an Eastern region of Gran Canaria duringJune 2015.

\mathbf{BL}	HARMONIE	HARMONIE	Surf. buoy.	B-V freq.,	Ratio
stability	$10 \mathrm{~m}$ wind	$10 \mathrm{~m}$ wind	$flux, B_s$	$\mathbf{N_{2h-h}}$	$\mathbf{V}_*/\mathbf{W}_*$
	${ m speed}~{ m (ms^{-1})}$	direction $(^{\circ})$	$(m^2 s^{-3})$	(s^{-1})	
LS	10.18	336.92 - NNW	-1.38×10^{-4}	1.68×10^{-2}	—
NS	6.10	331.46 - NNW	-9.78×10^{-4}	pprox 0	—
TN	7.51	331.82 - NNW	pprox 0	pprox 0	—
CN	8.52	340.72 - NNW	3.68×10^{-3}	1.04×10^{-2}	—
PC	1.59	116.78 - ESE	6.22×10^{-3}	1.54×10^{-2}	0.17
MC	6.87	358.98 - N	3.02×10^{-3}	1.74×10^{-2}	0.76

Table 1: Location in UTM zone 28N coordinates and heights above the sea level of the anemometers used in the numerical application in Gran Canaria Island.

Code	Name	$oldsymbol{x}$ (m)	y (m)	\boldsymbol{z} (m)
C639U	San Bartolomé de Tirajana, El Matorral	455345	3076503	51
C648C	Aguimes	455326	3086484	316
C649I	Gran Canaria, Aeropuerto	461659	3088640	34
C649R	Telde, Melenara	462855	3095805	19

Table 1: Experiment results with data from HARMONIE-AROME and ECMWF.

Wind direction	\mathbf{NNW}	NNW	NNW	NNW	\mathbf{N}	\mathbf{N}
Wind speed (ms^{-1})	v > 6	v > 6	v > 6	v > 6	$v\leq 2$	v > 6
Stability	\mathbf{LS}	\mathbf{NS}	\mathbf{TN}	\mathbf{CN}	\mathbf{PC}	\mathbf{MC}
RMSE(H-A)	8.47	3.12	5.94	7.89	3.29	2.46
RMSE(H-A/W3D) nominal values	4.00	3.47	4.74	6.21	2.55	2.40
RMSE(H-A/W3D) estimated values	2.44	2.59	3.47	4.78	2.27	1.31
RMSE(ECMWF)	7.08	3.88	3.16	6.14	2.97	2.98
RMSE(ECMWF/W3D) nominal values	4.00	3.47	4.74	6.21	2.55	5.90
RMSE(ECMWF/W3D) estimated values	2.56	2.91	3.68	4.79	2.53	2.35

Wind Field Modeling Results for 2 selected cases: improvements on NWP forecasting

13.8

Wind Field Modeling Conclusions and Future Research

Conclusions

- Mass Consistent models (MCM) can improve the forecasting results of Mesoscale models
- The studied parameters involved in MCM depend on the wind velocity (speed and direction), and the atmospheric stability. Also day-time and night-time results are different.
- The mimetic algorithm proposed is a robust tool for solving this type of parameter estimation problems.

Future Research

- Construct a reduced basis of those parameters for solving wind episodes (different locations). Only forecasting values as input data.
- Apply this methodology to the results of different mesoscale models (HARMONIE, ECMWF)
- Reproduce the study with a mass and momentum conserving model.