

Games strategies and Evolutionary Algorithms for CFD optimization.

Applications: Drag reduction of a Natural Laminar Airfoil using an Active Bump at Transonic Flow Regimes (1), Distributed propulsion (2) and Structural Engineering (3)

<u>Jacques Periaux^o,</u>唐智礼(Z.L. Tang)*, 陈永彬(Y.B. Chen)* [°] International Center for Numerical Methods in Engineering (CIMNE/UPC) * Nanjing University of Aeronautics & Astronautics (NUAA) applications (1) and (2)

Credit for application (3):

David Greiner, Jose M. Emperador, Blas Galvan, Gabriel Winter, ULPGC

XVIII Spanish-French School Jacques Louis Lions about Numerical Simulation in Physics and Engineering Las Palmas de Gran Canaria, Spain, June 25-29, 2018

This lecture presents :

1) Theoretical ingredients coupling EAs with games

2) Applications of Advanced Evolutionary Methods to Aeronautics/Structure Design with hybridized Game/GAs

1) Motivation: MASTERING COMPLEXITY, A **COLLABORATIVE WORK....**

Π

- technological constraints economical constraints
 - societal constraints (H2020)
 - integrated systems

Targets (greener, safer digitalized products)

- Computational multi disciplinary tools
- Decision maker algorithms for the design of industrial products
- Time and cost reduction with digitalized smart and intelligent systems
- **Priorities**
 - 1) Robustness (global solutions)
 - 2) Affordable cost and efficiency
 - 3) Transport obility •

THE CONTEXT....

Multi Disciplinary

Search Space – Large Multimodal Non-Convex Discontinuous

Share data knowledge: different cultures and technologies connected Integration of software with interfaces and human factors

Trade off between conflicting Requirements

EVOLUTIONARY ALGORITHMS (60') (John Holland:adaptation **David Goldberg : optimisation**

Traditional Gradient Based methods for MDO cannot capture optimal solution 100% of the cases

if the search space is in particular:

- Large and hilly
- Multimodal
- Non-Convex
- Many Local Optima
- Discontinuous

A real aircraft design optimization might exhibit one or several of these characteristics

Global minimum

local minimum

Genetic Algorithms (GAs): parameters

Population size: 30-100, problem dependent Cross over rate: Pc= 0.80-0.95Mutation rate: Pm= 0.001-0.01

GENETIC ALGORITHMS : Example of a chromosome or individual

MULTI-OBJECTIVE OPTIMISATION (1)

- Aeronautical design problems require more and more multi objective optimization with constraints.
- This situation occurs when two or more objectives that cannot be combined rationally. Some examples :
 - Drag at two different values of lift.
 - Efficiency and noise
 - Drag and thickness.
 - Drag and RCS signature

MULTI-OBJECTIVE OPTIMISATION

Different Multi-Objective approaches

- Aggregated Objectives, main drawback is loss of information and the a-priori biased choice of weights.
- Game Theory (von Neumann)
 - Game Strategies
 - Cooperative Games Pareto
 - Competitive Games Nash
 - Hierarchical Games Stackelberg

Vector Evaluated GA (VEGA) Schaffer,85

MULTI-OBJECTIVE OPTIMISATION

A =set of possible strategies for A

 \overline{B} = set of possible strategies for B

Pareto Dominance

Pareto Optimality (minimization, 2 Players A and B).

o optimal if and only if:

$$\forall (x,y) \in \overline{A} \times \overline{B}, \begin{cases} f_A(x^*, y^*) \le f_A(x, y) \\ f_B(x^*, y^*) \le f_B(x, y) \end{cases}$$

Pareto Dominance (for n players $(P_1,...,P_n)$ \Box Player P_i has objective f_i and controls v_i

 \Box (v₁*,..,v_k*,..,v_n*) dominates (v₁,..,v_k,..,v_n) iff:

$$\forall i, f_i(x_1^*, \dots, x_k^*, \dots, x_n^*) \le f_i(x_1, \dots, x_k, \dots, x_n)$$

$$f_i(x_1^*, \dots, x_k^*, \dots, x_n^*) < f_i(x_1, \dots, x_k, \dots, x_n)$$

MULTIPLE OBJECTIVE OPTIMIZATION

Linear Combination of criteria (aggregation)

BUT:

Dimensionless number

Heavy bias by the choice of the weights <u>BETTER</u>:

 $C = \sum \omega_i \cdot c_i$

i=1

VEGA (Vector-Evaluated GA) [Schaffer, 85]

□ bias on the extrema of each objective

Pareto Front

Pareto Optimality:

□ a strategy (v₁*,..,v_k*,..,v_n*) is Pareto-optimal if it is not dominated

Pareto Front: □ The set of all NON-DOMINATED strategies

Nash Equilibrium

Competitive symmetric games [Nash, 1951]

For 2 Players A and B:

$$f_{A}(\vec{x}^{*}, \vec{y}^{*}) = \inf_{x \in \bar{A}} f_{A}(x, \vec{y}^{*})$$
$$f_{B}(\vec{x}^{*}, \vec{y}^{*}) = \inf_{y \in \bar{B}} f_{B}(\vec{x}^{*}, y)$$

For n Players :

$$\forall i, \forall v_i, f_i(\bar{v}_1^*, \dots, \bar{v}_{i-1}^*, \bar{v}_i^*, \bar{v}_{i+1}^*, \dots, \bar{v}_n^*)$$

$$\leq f_i(\bar{v}_1^*, \dots, \bar{v}_{i-1}^*, \bar{v}_i, \bar{v}_{i+1}^*, \dots, \bar{v}_n^*)$$

« When no player can further improve his criterion, the system has reached a state of equilibrium named Nash equilibrium "

Stackelberg Games

□ Hierarchical strategies

□ Stackelberg game with A leader and B follower :

minimize $f_A(x,y)$ with y in D_B

□ Stackelberg game with B leader and A follower :

$$\min_{x\in D_A, y\in\overline{B}} f_B(x,y)$$

4.5 3.5 1.5 2 2.5

45 ·

35 -

30 -

20 · 15 · 10 ·

0 >

25

Optimization with GAs

optimize the function f_A and f_B with the GAs optimization tools presented earlier

- using a (Pareto game/GAs)
- using a (Nash game/GAs)
- using a (Stackelberg game/GAs)

Nash GA : convergence

Nash GA: Convergence (2)

f_A converges towards 0.896 and f_B towards 0.88
Both those are the values on the objective plane!

we can check that

$$f_A(\frac{5}{3},\frac{7}{3}) = 0.896$$
 and $f_B(\frac{5}{3},\frac{7}{3}) = 0.88$

<u>Conclusion</u>: the Nash GA finds the analytic Nash Equilibrium

- **Specifications:**
 - □ 2 populations, each of size 30
 - □P_c=0.95 P_m=0.01

/) in [-5,5]x[-5,5]

Exchange frequency : every generation !

Nash GA : convergence

Stackelberg GA : convergence

Stackelberg GA : convergence (3)

In both cases (with either A or B leaders), the algorithms converges towards 0.8 but in the objective plane.

In the (x,y) plane, we can see that the first game converges towards (1.4,2.2) and that the second game converges towards (1.8,2.6)

Converged games solutions for GAs vs analytical approaches

Equilibria of the three games

Some REFERENCES:

7.

8

- 1. Hansen, N. and Ostermeier, A. *Completely Derandomised Self-Adaption in Evolution Strategies*, in Evolutionary Computation, volume 9(2), pages 159–195. MIT Press, 2001.
- 2. Gonzalez, L. F. *Robust Evolutionary Method For Multi-objective And Multidisciplinary Design Optimisation In Aeronautics*, The University of Sydney, 2005.
- 3. Gonzalez, L.F, Whitney, E.J., Periaux, J., Sefrioui, M. and Srinivas, K. A Robust Evolutionary Technique for Inverse Aerodynamic Design, Design and Control of Aerospace Systems Using Tools from Nature. Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering, Volume II, ECCOMAS 2004, Jyvaskyla, Finland, July 24-28, 2004 m Eds:P. Neittaanmaki mT. Rossim S. Korotovm E. Onate m J. Periaux and D. Knorzer, University of Jyvaskyla, Jyvaskyla, 200\$m CD ISBN 951-39-1869-6.
- 4. González, L., Whitney, E., Srinivas, K. and Periaux, J. *Multidisciplinary Aircraft Design and Optimisation Using a Robust Evolutionary Technique with Variable Fidelity Models*, AIAA Paper 2004-4625, In CD Proceedings 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Aug. 30 Sep. 1, 2004, Albany, NY.
- 5. Whitney, E. J. *A Modern Evolutionary Technique for Design and Optimisation in Aeronautics,* PhD Thesis, The University of Sydney, 2003.
- 6. Whitney, E., Sefrioui, M., Srinivas, K. and Périaux, J., *Advances in Hierarchical, Parallel Evolutionary Algorithms for Aerodynamic Shape Optimisation*, JSME (Japan Society of Mechanical Engineers) International Journal, Vol. 45, No. 1, 2002
 - D.S. Lee, Uncertainty Based MultiObjective and Multidisciplinary Design Optimization in Agrospace Engineering, PhD, University of Sydney, NSW, Australia, 2008
 - J.Periaux, F. Gonzalez, DS. C.Lee, Advanced Evolutionary Algorithms and Games Strategies for Multidisciplinary Design : Application to Aeronautics, Springer , 2015

2. Applications of Advanced Evolutionary Optimization Methods to Aeronautics Design with EAs

(2) Drag reduction of a Natural Laminar Airfoil using an Active Bump at Transonic flow regimes

(J.Periaux, Z.Tang, Y.B. Chen, Lianhe Zhang)

Outline

1. Motivation

- 2. Flow field simulation and laminar-turbulent transition prediction on an airfoil
- 3. Definition of the Natural Laminar Flow (NLF) airfoil shape design optimization
- 4. General game mathematical formulations for multi-objective optimization
- 5. Numerical implementation of the two objective
- evolutionary shape optimization of NLF airfoil and SCB using game strategies (Pareto, Nash ,Stackelberg)
- 6. Results of optimization and analysis for different games

7. Conclusion and perspectives

1. Motivation

Drag breakdown typical of a large modern swept-wing aircraft

◆ In order to improve the performances of a civil aircraft at transonic regimes, it is critical to develop new computational optimization methods to reduce friction drag. At high Reynolds numbers, LFC technologies and NLF airfoil/wing design remain effcient methods to reduce the turbulence skin friction

Typical Drag Reduction Methods

How to delay transition on an airfoil ???

LFC (Laminar Flow Control): modifying the shape of the boundary layer velocity profile ! by applying small amount of suction or blowing at the wall (active device)

NLF (Natural Laminar Flow): optimizing the airfoil/wing shape to get a favorable pressure distribution and improve the boundary layer stability : it is the presented approach !

But the larger the region of laminar flow is, the stronger the shock wave is ! (compare figures 1-2-3)

3

How to overcome the **conflict** between laminar flow and shock wave ???

→ Install a bump at the location of the shock wave !!!

2. Flow field simulation and laminar-turbulent transition of an airfoil

> 2D finite volume structured RANS flow solver (NUAA software)

> 2D FD compressible laminar boundary layer : BL2D

eN methodology for laminar-turbulent transition prediction : LST2D NUAA software

Laminar-turbulent transition on an airfoil

Laminar-turbulent transition on an airfoil

Three flow charts of the coupling between flow field solver and transition prediction

Laminar-turbulent transition on an airfoil

The computational requirements and CPU costs of three transition prediction	
methods.	

Methods	Euler + boundary layer iteration	High-order RANS solver	Scond-order RANS solver
Numerical scheme accuracy	2nd order	4th order	2nd order
Mesh density	30,000 cells	150,000 cells	50,000 cells
Number of solver calls	≥ 6	1	1
Number of BL analysis	6×3	0	1×3
Number of e^N calls	6×3	1	1×3
CPU cost (Minutes)	2.4	≥ 5	1.3

3. Methodology for NLF airfoil shape design optimization

- NLF airfoil shape design optimization: objective functions and analysis of optimized results
- Wave drag reduction of the NLF airfoil during the shape design optimization procedure
- A mathematical formulation for the NLF airfoil shape
 - optimization at transonic regime

Shape parameterization and search space

3.1 Optimization problem definition

Delay transition location to design NLF airfoil (J1)? or/and Total drag minimization to design NLF airfoil (J2)?

Delay transition J1 =

$$\max_{Y} \mathcal{J} = x_{upper} + x_{lower}$$
$$Y = (y_{1,up}, \cdots, y_{7,up}; y_{1,low}, \cdots, y_{7,low})$$

Total drag minimization J2 =

$$\begin{cases} \min_{Y} \mathcal{J} = C_{Dtotal} \\ Y = (y_{1,up}, \cdots, y_{7,up}; y_{1,low}, \cdots, y_{7,low}) \end{cases}$$

Method 1: Total drag minimization optimization (1)

Pressure distributions, transition locations on the RAE2822 and total drag minimization airfoil.

Method 1: Total drag minimization optimization (2)

Aerodynamic performance of RAE2822 and total drag minimized airfoils (x_{upper} and x_{lower} are transition locations on upper and lower surfaces of the airfoil respectively).

	RAE2822 airfoil	$MinC_D$ airfoil
C_L	0.6935	0.6905
C_{Dtotal}	0.01317	0.01178
$C_{Dpressure}$	0.008207	0.006439
$C_{Dviscous}$	0.005162	0.005345
x_{upper}/c	0.1333	0.1098
x_{lower}/c	0.4699	0.4871

Results: the total drag minimization optimization can reduce the wave drag,

but it does not delay the transition location.

Method 2: Transition location maximization (1)

Objective function convergence history of the NLF airfoil optimization

> IteB airfoil : best airfoil in second generation; IteC airfoil : best airfoil in third generation.

The aerodynamic performance of RAE2822 and NLF airfoils.

Airfoil	RAE2822	IteB	IteC	NLF
C_L	0.7064	0.7114	0.7081	0.7187
$C_{Dpressure}$	0.008095	0.008417	0.009039	0.009403
x_{upper}/c	0.2102	0.4784	0.4943	0.5258
x_{lower}/c	0.4624	0.4627	0.4622	0.4631

Method 2: Transition location maximization (2)

The laminar flow range increased, but the wave strength increased simultaneously !

➔ In this lecture: find a method to control the shock wave in the neighborhood of the trailing edge of airfoils ?

3.2 Wave drag reduction of the NLF airfoil during the design optimization procedure with a bump

3.2 Wave drag reduction of the NLF airfoil during the design optimization procedure with bump (1)

Convergence history for shape optimization of a bump installed on the RAE2822 airfoil (left) and the NLF airfoil (right).

3.2 Wave drag reduction of the NLF airfoil during the design

optimization procedure with bump (2)

Results : Pressure distributions and transition locations on RAE2822 airfoil and airfoil equipped with a bump (left) and on NLF airfoil equipped with a bump (right).

3.2 Wave drag reduction of the NLF airfoil during the design optimization procedure with bump (3)

Airfoils	RAE2822	RAEBump	NLF	NLFBump
C_L	0.7064	0.7168	0.7187	0.7366
C_{Dpres}	0.008095	0.007128	0.009403	0.007826
x_{upper}/c	0.2102	0.2102	0.5258	0.4790

Aerodynamic performance of baseline and optimized airfoils.

0.4624

0.4624

Above, two optimization examples indicate that the SCB does not affect the transition location of the **fl**ow, excepted when the transition occurs at the location of shock wave. Therefore, the SCB is an efficient device to be used during the NLF airfoil design optimization in order to weaken the shock intensity.

0.4631

0.4631

 x_{lower}/c

3.3 A mathematical formulation for the NLF airfoil shape optimization operating at transonic regime

In summary, the mathematical modeling of natural laminar flow airfoil design should simultaneously maximize the transition location and minimize/control the wave strength, i.e :

Delay the transition location to maintain a larger region of favorable pressure gradient on airfoil surface;

Install optimal SCB shape at the location of shock wave to control wave drag.

Two objective optimization functions, J1 and J2 = $\begin{cases} \max_{(X,Y)} \mathcal{J}_1 = x_{upper} + x_{lower} \\ \min_{(X,Y)} \mathcal{J}_2 = C_{D_{wave}} \\ X = (x_{height}, x_{length}, x_{relative}) \\ Y = (y_{1,up}, \cdots, y_{7,up}; y_{1,low}, \cdots, y_{7,low}) \end{cases}$

3..3 A mathematical formulation for the NLF airfoil shape optimization at transonic regime : search spaces of design variables

Parameters	Lower	Upper	Parameters	Lower	Upper
1 01 01 00 01 0	bound	bound	1 00 00 00 00 00	bound	bound
$y_{1,up}/c$	-0.002	0.002	$y_{1,low}/c$	-0.002	0.002
$y_{2,up}/c$	-0.003	0.003	$y_{2,low}/c$	-0.003	0.003
$y_{3,up}/c$	-0.005	0.005	$y_{3,low}/c$	-0.005	0.005
$y_{4,up}/c$	-0.005	0.005	$y_{4,low}/c$	-0.005	0.005
$y_{5,up}/c$	-0.005	0.005	$y_{5,low}/c$	-0.005	0.005
$y_{6,up}/c$	-0.003	0.003	$y_{6,low}/c$	-0.003	0.003
$y_{7,up}/c$	-0.003	0.003	$y_{7,low}/c$	-0.002	0.002

The search space of bump shape (c is the chord length of an airfoil).

	$x_{relative}/c$	x_{length}/c	x_{height}/c
Lower bound	-0.05	0.10	0.001
Upper bound	0.05	0.30	0.005

In following sections, an EAs hybridized with different games (cooperative Pareto game, competitive Nash game and hierarchical Stackelberg game) are implemented to solve two-objective optimization problem

Numerical implementation of the two Objective evolutionary shape optimization of NLA and SCB using hybridized game/EAs

1. Numerical implementation of a NLF airfoil shape optimization with a cooperative Pareto game and EAs

2. Numerical implementation of a NLF airfoil shape optimization with a competitive Nash game and EAs

3. Numerical implementation of a NLF airfoil shape optimization with a hierarchical Stackelberg game and EAs

4.1 Numerical implementation of a NLF airfoil shape optimization with a cooperative Pareto game

Considering the lift constraint, two-objective problem, J1 and J2 are defined as Maximization and Minimization Optimization problems

$$\begin{cases} \max_{(X,Y)} \mathcal{J}_1 = (x_{upper} + x_{lower})(1 + \beta(C_L - C_{L0})/C_{L0}) \\ \min_{(X,Y)} \mathcal{J}_2 = C_{D_{pres}}(1 - \beta(C_L - C_{L0})/C_{L0}) \\ subject to & \beta = 0, when \ C_L \ge C_{L0} \\ \beta = 1, when \ C_L < C_{L0} \\ X = (x_{height}, x_{length}, x_{relative}) \\ Y = (y_{1,up}, \cdots, y_{7,up}; y_{1,low}, \cdots, y_{7,low}) \end{cases}$$

- 1. The baseline shape is the RAE2822 airfoil;
- **2.** Design flight conditions are M ∞ = 0.729, AOA = 2.31° and Re = 1.28 × 10⁷;
- 3. A parallelized version of a Non-dominated Sorting Genetic Algorithm II (NSGA-II; K. Deb) is used;
- 4. NSGAII is run with a crossover probability 0.8, a mutation probability 0.1, a tournament method for selection operator and a population size 150.

5.1 Numerical implementation of a NLF airfoil shape optimization with a cooperative Pareto game (2)

Flow chart of a parallelized NSGA-II optimization procedure for a laminar flow airfoil shape Optimization.

Capture of the discontinuous Pareto Front

Convergence of the non-dominated solutions at different generations of the two-objective NLF airfoil shape optimization.

4.2 Numerical implementation of a NLF airfoil shape optimization with a competitive Nash game

Considering the lift constraint, two-objective problem, J1 and J2

with two players P1 (laminar) and P2 (bump wave drag)

$$\begin{cases} Player1 \begin{cases} \max_{(Y)} \mathcal{J}_1(X,Y) = x_{upper} + x_{lower} \\ Subject \ to \ C_L = C_{L0} \\ Player2 \begin{cases} \min_{(X)} \mathcal{J}_2(X,Y) = C_{D_{pres}} \\ Subject \ to \ C_L = C_{L0} \\ Subject \ to \ C_L = C_{L0} \\ X = (x_{height}, x_{length}, x_{relative}) \\ Y = (y_{1,up}, \cdots, y_{7,up}; y_{1,low}, \cdots, y_{7,low}) \end{cases}$$

A 3-level Parallelization of the Nash EAs (PNEAs) is used to solve the above problem,

Ievel-1 : parallelization is performed on Nash players; (symetric game)

◆ level-2 : parallelization is on individuals within population; (individuals of a population)

◆ level-3 : parallelization of RANS solver

4.2 Numerical implementation of a NLF airfoil shape

Diagram showing the three levels of parallelism implemented in Nash Evolutionary Computing.

4.3 Numerical implementation of a NLF airfoil shape

optimization with a competitive Nash game

Convergence history of the Nash equilibrium.

4.4 Numerical implementation of a NLF airfoil shape optimization with a hierarchical Stackelberg game

the design territory split is kept as the same as for the above Nash game. Considering the lift constraint, the equivalent Stackelberg optimization formulation is defined as follows :

Considering the lift constraint, a two-objective problem, J1 and J2 is :

$$\begin{aligned} Leader: & \left\{ \begin{array}{l} \max_{(Y)} \mathcal{J}_1(X,Y) = x_{upper} + x_{lower} \\ Subject \ to \ C_L = C_{L0} \\ X = (x_{height}, x_{length}, x_{relative}) \\ Y = (y_{1,up}, \cdots, y_{7,up}; y_{1,low}, \cdots, y_{7,low}) \\ \end{array} \right. \\ \\ \begin{aligned} Follower: & \left\{ \begin{array}{l} \min_{(X)} \mathcal{J}_2(X,Y) = C_{D_{pres}} \\ Subject \ to \ C_L = C_{L0} \\ X = (x_{height}, x_{length}, x_{relative}) \\ Y = (y_{1,up}, \cdots, y_{7,up}; y_{1,low}, \cdots, y_{7,low}) \end{array} \right. \end{aligned}$$

4.4 Numerical implementation of a NLF airfoil shape optimization with a hierarchical Stackelberg game

Diagram of a Stackelberg Evolutionary Algorithm.

4.3 Numerical implementation of a NLF airfoil shape optimization with a hierarchical Stackelberg game

Convergence history of the Stackelberg solution.

5. Optimization : results and analysis

6.1 Optimization results with different game strategies

Table 1.CPU cost for computing Pareto front, Nash and Stackelberg equilibria

	D : C :	3.7 1 .1	0. 1 11
	Pareto front	Nash equilirium	Stackelberg
Number of parameters	17(14+3)	14/3	14/3
Population size	150	150/50	150/50
Generations	80	$9 \times (5/5)$	$9 \times (10/10)$
Crossover probability	0.8	0.8	0.8
Mutation probability	0.1	0.1	0.1
Number of cores	256	256	256
CPU performance	CPU E5-2640	CPU E5-2640	CPU E5-2640
CPU cost(h)	140	90.25	180.5

The aerodynamic performances of selected Pareto Members A, B, C, RAE2822, RAEBump, NLF, NLFBump, NE and SE airfoils are presented on Tables 1-3. It shows that the shock wave intensity decreases obviously by installing the bump. Positions of the NE and SE with Pareto front in the solution space is shown in Figure 1. It can be observed that the transition of NE and SE are delayed, by 51.07% and 47.84% of chord length on the upper airfoil respectively. Moreover, the shock wave intensity does not increase when compared with that of the

5.1 Optimization results with the three game strategies

Fig.1 Converged Pareto front and solutions of NE, SE, RAEBump, NLF, NLFBump and Baseline shape.

6.1 Optimized results with game strategies : quality comparisons

	Table 2. Aerodynamic performances of airfoils							
	(Calculated with transition prediction simulation)							
Airfoils	Airfoils x_{upper}/c x_{lower}/c C_L C_{Dpres} C_{Dvis} C_{Dtotal} $M \cdot L/I$							
RAE2822	0.2102	0.4624	0.7064	0.008095	0.003179	0.01127	45.69	
RAEBump	0.2102	0.4624	0.7168	0.007128	0.003178	0.01031	50.70	
NLF	0.5258	0.4631	0.7187	0.009403	0.002713	0.01212	43.24	
NLFBump	0.4790	0.4631	0.7366	0.007826	0.002779	0.01061	50.63	
NE	0.5107	0.4786	0.7040	0.007519	0.002727	0.01024	50.12	
SE	0.4784	0.4780	0.7084	0.008000	0.002794	0.01079	47.86	
PM A	0.5416	0.4630	0.7181	0.007428	0.002647	0.01008	51.88	
PM B	0.2166	0.4630	0.7016	0.006358	0.003217	0.009575	53.41	
PM C	0.5104	0.4628	0.7056	0.006859	0.002724	0.009583	53.67	

Table 3. Aerodynamic performances of airfoils (Calculated with full turbulence simulation).

Airfoils	C_L	$C_{D pres}$	C_{Dvis}	$C_{D total}$	$M \cdot L/D$
RAE2822	0.7064	0.008095	0.005585	0.01368	37.64
RAEBump	0.7168	0.007128	0.005602	0.01273	41.05
NLF	0.7187	0.009403	0.005547	0.01495	35.05
NLFBump	0.7366	0.007826	0.005584	0.01341	40.04
NE	0.7040	0.007519	0.005640	0.01316	39.00
SE	0.7084	0.008000	0.005570	0.01357	38.06
PM A	0.7181	0.007428	0.005592	0.01302	40.20
PM B	0.7016	0.006358	0.005642	0.01200	42.62
PM C	0.7056	0.006859	0.005621	0.01248	41.21

Appendix

Comparison of skin friction coeffcient distributions between full turbulence simulation and simulation with transition prediction on

- i) the baseline shape (left)
- ii) the Nash equilibrium solution (right).

Comparison of skin friction coeffcient distributions between full turbulence simulation and simulation with transition prediction on

- the Stackelberg equilibrium (left) solution
- Pareto Member A (PMA) airfoil (right)selected from Pareto front.

Comparison of skin friction coeffcient distributions between full turbulence simulation and simulation with transition prediction on the PM B airfoil (left) and PM C airfoil (right) selected from Pareto front.

6.2 Discussion of the influence of the territory split location in game strategies with respect to flow physics

Consider the non-physical Nash solution and compare it with the physical Nash equilibrium solution:

Physical Nash:
$$\begin{cases} \max_{(Airfoil)} \mathcal{J}_1 = x_{upper} + x_{lower} \\ \min_{(SCB)} \mathcal{J}_2 = C_{D_{wave}} \end{cases}$$

Nonphysical Nash :
$$\begin{cases} \max_{(SCB)} & \mathcal{J}_1 = x_{upper} + x_{lower} \\ \min_{(Airfoil)} & \mathcal{J}_2 = C_{D_{wave}} \end{cases}$$

6.3 Discussion of territory split in game strategies with respect to flow physics

Consider the non-physical Stackelberg solution and compare it with the physical Stackelberg equilibrium solution:

Physical Stackelberg:

$$Leader: \max_{(Airfoil)} \mathcal{J}_1 = x_{upper} + x_{lower}$$

Follower:
$$\min_{(SCB)} \mathcal{J}_2 = C_{D_{wave}}$$

Nonphysical Stackelberg:
$$\begin{cases} Leader: \max_{(SCB)} \mathcal{J}_1 = x_{upper} + x_{lower} \\ Follower: \min_{(Airfoil)} \mathcal{J}_2 = C_{D_{wave}} \end{cases}$$

6.2 Analysis: territory split in game strategies with respect to flow physics

Procedure of non-physical Nash cycles.

Number of Nash cycle	C_L	x_{upper}/c	x_{lower}/c	C_{Dpres}
0	0.7064	0.2102	0.4624	0.008095
1	0.6656	0.1197	0.4626	0.007730
2	0.6832	0.1048	0.4629	0.008185
3	0.6809	0.0912	0.4626	0.008184
4	0.7022	0.0949	0.4626	0.006440
5	0.6827	0.1034	0.4631	0.007520
6	0.6780	0.08241	0.4627	0.008070
7	0.7174	0.09871	0.4631	0.006851
8	0.7000	0.07548	0.4630	0.006540

Aerodynamic performances of Nash equilibrium USing non-physical Split territory.

Airfoils	C_L	x_{upper}/c	x_{lower}/c	C_{Dpres}
RAE2822	0.7064	0.2102	0.4624	0.008095
NE	0.7040	0.5107	0.4786	0.007520
Non-physical Nash	0.7000	0.07548	0.4630	0.006540

6.4 Discussion of territory split in game strategies with respect to flow physics

Procedure of non-physical Stackelberg cycles.

Number of Nash cycle	C_L	x_{upper}/c	x_{lower}/c	C_{Dpres}
1	0.7064	0.2102	0.4624	0.008095
2	0.7068	0.2102	0.4624	0.008095
3	0.6781	0.2102	0.4624	0.009176
4	0.6662	0.0946	0.4629	0.007956
5	0.6933	0.1019	0.4629	0.007118
6	0.6999	0.09670	0.4628	0.006864
7	0.7100	0.1073	0.4628	0.006612
8	0.7013	0.1024	0.4628	0.006467
9	0.6996	0.1025	0.4628	0.006875
10	0.7010	0.2064	0.4622	0.006599
11	0.7032	0.2120	0.4622	0.006720
12	0.7010	0.1970	0.4624	0.006567

Aerodynamic performances of Stackelberg equilibrium using non-physical split territory.

Airfoils	C_L	x_{upper}/c	x_{lower}/c	C_{Dpres}
RAE2822	0.7064	0.2102	0.4624	0.008095
SE	0.7068	0.4784	0.4780	0.007940
Non-physical Stackelberg	0.7010	0.1970	0.4624	0.006567

7. Conclusion and Perspectives (1)

Conclusion:

Based on the mathematical formulation of a NLF shape optimization problem operating at transonic regimes, an EAs hybridized with different games (*cooperative Pareto game, competitive Nash game and hierarchical Stackelberg game*) has been implemented to optimize the airfoil shape targeting a larger laminar flow region and a weaker shock wave drag simultaneously.

Each game provides different solutions with different performances. Numerical experiments demonstrate that each game coupled to the EAs optimizer can easily capture either a Pareto Front, a Nash Equilibrium or a Stackelberg solution of the two-objective shape optimization problem.

7. Conclusion and perspectives : i HPC demand ! (2)

- From obtained numerical experiments, it is noticed that one important concern related with the multi-disciplinary shape optimization in aerodynamics is the high computational effort demand.
 - parallelization of the game strategy,
 - Parallelization of the multi disciplinary analyzer software
 - parallelization of each physical discipline.

7. Conclusion and perspectives (3)

Solutions on Pareto front provide the best set of laminar flow airfoils with significantly improved aerodynamic performances. From the results it can be concluded that the **NLF** shape design optimization method coupled with games implemented in this paper is feasible and effective.

Perspectives:

- The methodology developed in this paper can be easily extended to 3-D NLF wings or even to NLF complete aircraft shape optimization (such as *future Blended Wing Body (BWB)* configurations with distributed propulsion) using large HPC environments.
- Coalition games, associated to disciplines like aerodynamics, structure, weight, stability, noise and control, will be considered for multi disciplinary NLF shape optimization.

8. References

[1] J. E. Green, Laminar flow control-back to future [R]. AIAA-2008-3738, 2008.

[2] J. Reneaux, Overview on drag reduction technologies for civil transport aircraft[C]// European Congress on Computational Methods in Applied Sciences and Engineering. F rance: ONERA, Aerodynamics Department, 2004: 2-13.

[3] S. Peter, An aerodynamic design method for supersonic natural laminar flow aircraft[D]. Standford: Department of Aeronautics and Astronautics, 2004.

[4] Jen D L, A Jameson, Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction[R]. AIAA-2009-897, 2009. J Driver, D W Zingg. Optimi zed natural-laminar-flow airfoils [J]. AIAA Journal, 2002, 40(6): 4-6.

[5] Z.L. Tang, J. Periaux, Constraint Handling in Adjoint/Nash Optimization Strategy for Multi-Criteria Aerodynamic Design, Computer Methods in Applied Mechanics and Engin eering, 271 (2014) pp: 130-143.

[6] J. Periaux, F. Gonzalez, D.S. C. Lee, Evolutionary Optimization and Games Strategies for Advanced Design: Applications to Aeronautics, Springer, May 2015

[7] D.S. Lee, G. Bugeda , J. Periaux, E. Onate, Robust active shock control bump design optimisation using hybrid parallel MOGA, Elsevier , Computers & Fluids 80 (2013) 214–2 24

Multidisciplinary shape design optimization of air-vehicle with distributed propulsion

Z.L. Tang, D.H. Yang, J. Periaux

A lecture to be presented at Stanford Univ. (Dept A&A) next August !

Layout characteristics of blended wing body

- The total weight of take-off is reduced by 15%
- Oil consumption per mile per se is reduced by 27%
- Empty weight reduction by 12%
- > Lift to drag ratio increased by 2
- Greatly reduce the noise of flight

1.2 Why to design distributed propulsion vehicle

Compared with the traditional vehicle, the distributed propulsion air-vehicle obviously has the following advantages. :

- **>** Reduce the high performance requirements of the engine
- Reduce aircraft noise
- Improve the efficiency of thrust
- Improve flight performance and improve safety
- Reduce the lift induced drag
- Reduce wing load and therefore its weight
- Improve aircraft stability and control ability
- Reduce the area and weight of the rudder
- Improve the safety and reliability of the propulsion system
- Short takeoff and landing range
 - BLI can increase fuel efficiency and increase flight range further.

The current status of distribution propulsion vehicle

L. Leifsson selected two BWB aircrafts as design platform.

- BWB aircraft with conventional propulsion (Installed 4 large turbofan engines with pylons)
- Distributed propulsion BWB aircraft (installing 8 engines with boundary layer ingestion)

The effects of distributed propulsion on flight performance and weight are studied by means of multidisciplinary optimization.

Results indicate:

- >More than 2/3 of energy consumption is saved
- Gust load and flutter are reduced
- >Wing weight is reduced significant

	Design varia	bles					
Variables		Reference value			参数		数值
b	Spanwise length	80.0			м	Mach number at	0.85
η_2	Spanwise position of 2 nd section	0.433			N	Number of	4-8
C ₁	Chord length of section 1	42.0			• • eng	engines Number of	490
C ₂	Chord length of section 2	12.0		r	IN pass	passengers Flight range	480
C ₃	Chord length of section 3	3.33	x_{le}	x_{le} [(miles)	7700
t ₁	Thickness of section 1	5.0862			W _d	factor	0.05
t ₂	Thickness of section2	1.4532					
t ₃	Thickness of section 3	0.404					
X _{le}	Front position of crabin	2.0	c_1				
L _{cabin}	Length of carbin	28.0			$\eta_2 \mid \mid c_2$	2	
Λ ₁	Swept angle 1	50.0		<u> </u>		$\overline{\}$	
Λ_2	Swept angle 2	30.0		1			
H _{cruise}	Flight altitude	12000		1 /			ì
W _{fuel}	Fuel weight	158757.7				\sim	
T _{sls}	Maximum static thrust of sea level	113429.6			h/9)	ſ
1952 (1952) 1952 (1952) 1952 (1952)					0/2	-	

Design conditions

Preliminary conclusions

Preliminary results show that the distributed propulsion BLI engine effectively:

- shortens take off distance,
- improves lift coefficient and lift drag ratio, and
- increases maximum flight speed.

Considering propulsion, aerodynamic and weight, the problem of multidisciplinary design optimization for distributed propulsion BWB aircraft has been solved for preliminary design.

In the optimization, the minimum take-off weight, the minimum fuel consumption rate and the maximum lift drag ratio are taken into account with 3 objective functions, combined with the constraints of flight control and voyage.

The preliminary optimization results show that the distributed propulsion layout has the advantages of improving the propulsion efficiency, improving the flight safety, reducing the induced resistance and reducing the load of the wing.

Application 3: Minimizing the Constrained Weight of Frames with Nash Genetic Algorithms: a mutation rate study

David Greiner^{*}, Jacques Periaux^{**}, Jose M. Emperador^{*}, Blas Galvan^{*}, Gabriel Winter^{*}

*Institute of Intelligent Systems and Numerical Applications in Engineering (SIANI), Universidad de Las Palmas de Gran Canaria (ULPGC), Spain **Department of Mathematical Information Technology (MIT), University of Jyväskyla, Finland & International Center for Numerical Methods in Engineering(CIMNE/UPC), Spain

Presented at ECFD-ECCM Congress, Glasgow, UK, 2018

Nash-Evolutionary Algorithms

A set of subpopulations co-evolve simultaneously each of which deals only with a partition of the search variables; subpopulations interact to evolve towards the equilibrium

xa1 ya2 xa3 xa4 ya5 ya6 Static DD - 4

Why Evolutionary Algorithms for Structural Optimization ?

In Structural Optimization:

- Existence of local optima and disconnected domain zones.
- Both search space and variables are discrete !

Evolutionary Algorithms (EAs) are appropriate : - are global optimizers due to their random population search.

- require no function properties (e.g: continuity, derivability, etc.)
- optimize with discrete variables

Skeletal Structures

Bar Structures are present in many engineering applications of growing interest in recent years

Structural Problem

Using the C/C++ language, the following computational implementation are developed:

- Analyzer : <u>Frame matrix calculator</u> Program (direct stiffness method), for Skeletal Structures.
- **Optimizer:** <u>Evolutionary Algorithms</u>(various strategies of optimization algorithms).
- **Objective Function** Definition (constrained weight).

Objective Function

1. The *constrained weight*, due to minimize the acquisition cost of raw material of the metallic frame; the following constraints are applied:

- Stresses of the bars (usual value for steel structures is the yield limit stress, of 2600 kgp/cm2), for each bar

$\sigma_{\sigma} - \sigma_{tim} \leq 0$

- Compressive slenderness limit, (buckling effect) compression lambda lower than 200 (limit is dependendent on national codes), for each bar $\mathcal{X} - \mathcal{X}_m \leq 0$

- *Displacements of joints or middle points* of bars (at each degree of freedom) in certain points, nodes of the beams

$$u_{o} - u_{im} \leq 0$$

Objective Function

The fitness function constrained weight has the following expression :

$$Fitness = \left[\sum_{i=1}^{Nbars} A_i \cdot \rho_i \cdot l_i\right] \left[1 + k \cdot \sum_{j=1}^{Nviols} (viol_j - 1)\right]$$

where:

A_i = area of cross-section i

 p_i = density of bar i

l_i = length of bar i

k = constant that regulates the coefficient between constraint and weight.

viol_j = for each of the violated constraints, is the coefficient between the violated value (stress, displacement or slenderness) and its reference limit. Nviols = Number of constraint violations

Test Case definition (1)

Computational domain, boundary conditions, loadings and design variable set

CIMNE

Test Case definition (2)

- IPE cross section types for beams (set between IPE-080 and IPE-500)
- HEB for columns (set between HEB100 and HEB-450)
- Admissible stresses of 2.2 and 2.0 T/cm² for beams and columns, respectively.
- Density and elasticity modulus E (steel) : 7.85 T/m³ and 2100 T/cm².
- Based on a continuous variable reference test problem of S. Hernández.
- The span is 5.6 m and the height of columns is 2.80 m.

55 members Search Space: 16⁵⁵ = 2^{4x55} = 2²²⁰ =1,7[.]10⁶⁶

Fitness Function Nash EAs: MCW

Minimum Constrained Weight (MCW): - Fitness Function in Panmictic EAs:

$$MCW = \left[\sum_{i=1}^{Nbars} A_i \cdot l_i \cdot \rho_i\right] \left[1 + k \cdot \sum_{i=1}^{Nviols} (viol_j - 1)\right]$$

- Fitness Function considering the Nash-EAs with 2 Domain Decomposition (e.g: 2 players in charge of bars):

Player 1: Nbar = 1, ..., NP1 Player 2: Nbar = NP1+1, ... Nbars

$$MCW = \left[\sum_{i=1}^{NP1} A_i \cdot l_i \cdot \rho_i + \sum_{i=NP1+1}^{Nbars} A_i \cdot l_i \cdot \rho_i\right] \left[1 + k \cdot \left[\sum_{j=1}^{Nviols(1,\dots,NP1)} (viol_j - 1) + \sum_{k=1}^{Nviols(NP1+1,\dots,Nbars)} (viol_k - 1)\right]\right]$$

Test Case: 3 domain decomposition

Nash EAs Beam-Column Domain Decomposition, 2 Player

Nash EAs Left-Center-Right Domain Decomposition, 3 Player

Four Algorithms Compared:

Panmicitic GA Nash GAs Left-Right DD Nash GAs Beam-Column DD Nash GAs Left-Center-Right DD

Parameters:

30 independent executions Population Size: 100 Codification: Binary Reflected Gray Code Mutation Rates: 0.4% & 0.8% Stopping Criterion: up to 600.000 fitness evaluations

Test Case Results: Mutation Rate Comparison MCW

Test Case Results: Mutation Rate Comparison MCW

Among Nash GAs: Domain Decomposition DD type has influence in the final results:
Left-Right DD better than Left-Center-Right DD better than Beam-Column DD.

Nash strategies show a more robust behaviour against mutation rate changes:

In the 0.8% mutation rate, Panmictic approach worsens its behaviour, while Nash strategies are capable to maintain similar results as in the 0.4% mutation rate, even improving them in terms of average and median final values in all Nash DDs when increasing the mutation rate to 0.8%.

CIMNE

Benefits from increasing Population Diversity: increasing the exploration capabilities of Nash strategies is beneficial for the exploration-exploitation equilibrium, as Nash GAs inherently are increasing exploitation versus Panmictic GAs.

Test Case Results: The whole Set of Experiments MCW

Table: Average ranking of the algorithms (comparison based on fitness values at

100		Be running of the ungointhing (comp	unsen eusea en	indicess variates
st	topping	criterion), the higher the better; Fried	lman Test. (p-v	alue = 6.19·10 ⁻⁶).
		Algorithm	Ranking	
		Panmictic GA	1.87	
		Nash-GAs Left-Right	3.08	
		Nash-GAs Beam-Column	2.43	
		Nash-GAs 3 player	2.61	
Table : A	djusted	p-values, Bergmann-Hommel's post	thoc procedure	(comparison ba
		on fitness values at stopping	g criterion).	
	i	Hypothesis		p-value
	1	Panmictic vs. Nash-EAs Left-H	Right	1.77.10-6
	2	Panmictic vs. Nash-EAs 3 pla	iyer	5.59.10-3
	3	Nash-EAs Left-Right vs. Nash-EAs Be	eam-Column	0.017
	4	Nash-EAs Beam-Column vs. Par	ımictic	0.036
	5	Nash-EAs Left-Right vs. Nash-EAs	3 player	0.044
	6	Nash-EAs Beam-Column vs. Nash-I	EAs 3 player	0.458

<u>Conclusions (this study, Minimum Constrained Weight problem):</u> <u>Panmictic GAs</u> are worse than any other Nash-GAs Among different Nash GAs , Left-Right DD is better than other DDs

Future: What goes next ?

- Extending the analysis of game strategies based EAs to multi-objective optimization in structural engineering problems; e.g. as in handled problems:

/1/D. Greiner, G. Winter, JM. Emperador (2004) "Single and multiobjective frame optimization by evolutionary algorithms and the auto-adaptive rebirth operator", *Computer Methods in Applied Mechanics and Engineering* 193 (33), 3711-3743.

/2/D. Greiner, P. Hajela (2012) "Truss topology optimization for mass and reliability considerations
 —co-evolutionary multiobjective formulations", *Structural and Multidisciplinary Optimization* 45 (4), 589-613.

/3/D Greiner et al. (2013) "Engineering Knowledge-Based Variance-Reduction Simulation and G-Dominance for Structural Frame Robust Optimization", *Advances in Mechanical Engineering*, Article ID 680359, 1-13.

- Considering hybridization of multi-games like, e.g.: Stackelberg game (leader) and Nash players (several followers) in Structural Engineering

