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Motivation

Variational problems

For x(t) : [0,1] — RV belonging to a suitable class of paths,

1
E(x) :/0 o(x(t), X' (t)) dt, ¢(y,z) : RV xRV - R,

Minimize in x :  E(x).

Optimality system

—[@2(x(£), X ()" + éx(x(t), X (t)) = 0/in (0,1),

together with end-point conditions.

Comparison

—[F(x(t), X' (t)] + g(x(t),x'(¢)) = 0in (0,1), x(0)=x(1)=0.
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1
E() =, /0 '(6) dt,
F(xx) +y) +g(x) = 0in (0.1), y(0) = y(1) = 0.
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VARIATIONAL PROBLEM

Minimize in x:  E(x) under x(0) =x(1) =0.

Program for an existence result:

@ the infimum m > 0 vanishes, and

@ the infimum m = 0 is attained (in the appropriate class of paths).
What is special about this non-variational case?

e E is a non-local, non-linear functional through the operator x — y.

e

Pablo Pedregal (UCLM) Variational methods Clermont-Ferrand 3/13



1
E() =, /0 '(6) dt,
F(xx) +y) +g(x) = 0in (0.1), y(0) = y(1) = 0.

VARIATIONAL PROBLEM

Minimize in x:  E(x) under x(0) =x(1) =0.

Program for an existence result:
@ the infimum m > 0 vanishes, and
@ the infimum m = 0 is attained (in the appropriate class of paths).

What is special about this non-variational case?
e E is a non-local, non-linear functional through the operator x — y.

e E is not a typical integral functional; hard to apply weak lower
semicontinuity based on convexity.

e —
Pablo Pedregal (UCLM) Variational methods Clermont-Ferrand 3/13



1
E() =, /0 '(6) dt,
F(xx) +y) +g(x) = 0in (0.1), y(0) = y(1) = 0.

VARIATIONAL PROBLEM

Minimize in x:  E(x) under x(0) =x(1) =0.

Program for an existence result:
@ the infimum m > 0 vanishes, and
@ the infimum m = 0 is attained (in the appropriate class of paths).
What is special about this non-variational case?
e E is a non-local, non-linear functional through the operator x — y.
e E is not a typical integral functional; hard to apply weak lower
semicontinuity based on convexity.
e Have to rely on smoothness and compactness through the classical

Palais-Smale condition.
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Assumptions, and main result

@ Linear growth in derivatives: fi(x), fo(x), g1(x), go(x), and
Co, Co > 0 such that

f(x,2)| < fi(x)|z] + fo(x), |g(x,2)] < g1(x)|z] + go(x),
18(x,2) - x| < Golz| + Golx|;
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[l Lo (v scrmy + [182ll oo (v xcrmy + ll8x oo (mr xRy < C1-

Under indicated assumptions on the maps f and g, there is at least one
solution x.
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Cannot rely on the direct method of the Calculus of Variations: no
information on convexity and/or weak lower semicontinuity.
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Proposition

E : H — R, a smooth functional over a Hilbert space H. E is coercive
(E(x) — oo if ||x|| = o0), and enjoys the Palais-Smale property. Then
there are minimizers for E in H.
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Basic fact

Cannot rely on the direct method of the Calculus of Variations: no
information on convexity and/or weak lower semicontinuity.

Proposition

E : H — R, a smooth functional over a Hilbert space H. E is coercive
(E(x) — oo if ||x|| = 00), and enjoys the Palais-Smale property. Then
there are minimizers for E in H.

Palais-Smale condition.

Every sequence {x;} such that {£(x;)} is a bounded sequence of numbers,
and E’(x;) — 0 in H, admits a subsequence converging (strongly) in that
same space.

But also need: such minimizer x of E in H is such that E(x) = 0.
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A non-local, integral form

Operator:
xry: —[f(xx)+y] +gxx)=0in(0,1), y(0)=y(1)=0.
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A non-local, integral form

Operator:
xry: —[f(x,x)+y] +gxx)=0in(0,1), y(0)=y(1)=

1
¥ (¢~ 1) [ R(:(5).X(5)) — (1 - Jglx(s) (5] s
(-1 / tg(x(s) X (s)) ds

/ [F(x(5), ¥(5)) — (1 — s)a(x(s), x'(s))] s,
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A non-local, integral form

Operator:
xry: —[f(xx)+y] +gxx)=0in(0,1), y(0)=y(1)=0.

1
y(t) =(t — 1) /0 [F(x(s), X (s)) — (1 — )g(x(s), X'(s))] ds
+(e-1) /0 g(x(s), X(s)) ds

1
+ [ [f(x(s),%'(s)) = (1 = s)g(x(s). X(s))] ds,

t

-t
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The derivative of E

X~vx=Yn~y
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1
E@.%) = [ ¥ Yo

1
— /0 Y - (Bl X)X 4 (%, X)X+ y - (2, X)X + ga(x, X)X)] dit

1
= - /0 [(y'Fe(x, X') + ygx(x, X)) - X + (y'f2(x,X') + ygz(x, X)) - X'] dt.
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The derivative of E

X~vx=Yn~y

—[f(x+eX,x'+eX")+y +eY'] +g(x+eX,x'+eX') =0, Y(0)=Y(1) = O.J

—[fx(x, X)X + £, (x, X)X + Y] + gx(x, X)X + g,(x, x')X" = 0,

1
<Eumo=4y%ywmm

1
=—Aw“mm%m+umﬂwwww&m%m+&m%mmm

1
= - /O [(y'fx(x, %) + yex(x, X)) - X + (y'Fa(x, X') + yga(x, X)) - X dit.

El(x) =X _[X/ + yIfZ(Xa XI) +ygz(x, XI)], +y x(X, X,) + ygx(x, X/) =0.
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Main proof
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Coercivity: x itself as a test function

1
/ [f(x,x) - X' +y - x' 4+ g(x,x") - x] dt = 0.
0
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GillXlliz08) = 2€ < Iy 120 10 J
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Palais-Smale condition

{x;}, {E(x;)}, bounded and E'(x;) — 0 in H}(0,1;RN): admits
a converging subsequence (strongly).
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Palais-Smale condition

{x;}, {E(x;)}, bounded and E'(x;) — 0 in H}(0,1;RN): admits
a converging subsequence (strongly).
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Palais-Smale condition

{x;}, {E(x;)}, bounded and E'(x;) — 0 in H}(0,1;RN): admits
a converging subsequence (strongly).

Coercivity: x; — X', x;j — x.
Objective: |[x; —x'[|12(0,1;rv) — 0.

Xj = E'(x):

—[X] +yifa(x;, x;) + yiga(x), X))+ yifx (X}, X;) + yi@x(x), X;) = 0.

Also know:

_[f(xj7 Xj) + yj/]/ + g(xjv Xj) =0, _[f(xv X/) + y/]/ + g(x, X/) =0.
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Two steps
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© E(x;) = (1/2)]lyjl[> = 0: y;, test function

1
/0 162+ y/fa(xj, X)) + yjgel(x;. X)) - !

+ (Y (%), X)) + yigx(x;, x})) - y;] dt = 0.
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© E(x;) = (1/2)]lyjl[> = 0: y;, test function

1
/0 162+ y/fa(xj, X)) + yjgel(x;. X)) - !

+ (Y (%), X)) + yigx(x;, x})) - y;] dt = 0.

1
Gl < - /O (62 + yj(ga(x), X)) + Fx(x,x)T) -y,
+ yjgx(x), X}) - yj] dt
< I I+ (Wl ey + il e e

+||gx||L°°(R"’><]R"’)> ||y11'“i2(0,1;R’V)‘
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© E(x;) = (1/2)]lyjl[> = 0: y;, test function

1
/O 162+ y/fa(xj, X)) + yjgel(x;. X)) - !

+ (Y (%), X)) + yigx(x;, x})) - y;] dt = 0.

Gllyjl1? < —/01[(X} +yj(82 (%, X)) + fx(x;, X)) -y
+ yjgx(x), X}) - yj] dt
< 151 Iyl + (HfXHLOO(]RNx]RN) + [lgzll Lo m <)
el o sy ) 1971 20,1,m
@ |[|x; — x'|| = 0: x; — x, test function

1
/0 [(FOxj %) —F 06, X) (v =) (=X )+ (8%, X)) —&(x, X'))-(x—x)] dt
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Conclusion

1
Glixi—x|? < lyjll ||X}—><’||+/0 [y (xj—x) +(&(x}, X)) —g(x, X)) (x;—x)] dt.
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Conclusion

1
Glixi—x|? < lyjll ||X}—><’||+/0 [y (xj—x) +(&(x}, X)) —g(x, X)) (x;—x)] dt.

Consequence:
o yJ’- — 0: first term on right-hand side converges to zero;
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Consequence:
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o xj. —x" — 0: second term on right-hand side converges to zero;
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Under our hypotheses on the mappings f and g, we have

li E(x) = 0.
Ef(;r)n—m () =0
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Conclusion

1
Glixi—x|? < lyjll ||X}—><’||+/0 [y (xj—x) +(&(x}, X)) —g(x, X)) (x;—x)] dt.

Consequence:
o yJ’- — 0: first term on right-hand side converges to zero;
e x, —x’ — 0: second term on right-hand side converges to zero;

J
* x; —x — 0: third term on right-hand side converges to zero.

Interesting consequence

Under our hypotheses on the mappings f and g, we have

li E(x) = 0.
E/(;r)n—m () =0

Proof of main result.
¢ {x;}, minimizing for E: E'(x;) — 0, and x} — x;
e E(xj) = 0, x; = x (strong).
¢ X, a solution: E(x) =0.
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Fully non-linear problems in non-divergence form

F(x(t),x'(t),x"(t)) =01in (0,1), x(0)=x(1)=0.
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Fully non-linear problems in non-divergence form

F(x(t),x'(t),x"(t)) =01in (0,1), x(0)=x(1)=0.

1
E(x) :/O %|F(x(t)7x’(t),x”(t))|2dt.
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Fully non-linear problems in non-divergence form

F(x(t),x'(t),x"(t)) =01in (0,1), x(0)=x(1)=0.

1
E(x):/o %|F(x(t)7x’(t),x”(t))|2dt.

Under appropriate assumptions, there is at least one solution x. |
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Assumptions (for a scalar case)

@ Smoothness: F is smooth with respect to the variables (x, p, q);
@ Convexity: the function |F(t, x, p, q)|? is a convex function of g;
® Coercivity: there are positive constants C and M with

[F(t,x,p.q)| = Clgl = M(lp| + x| + 1), [X'(0)] < C(E(x) +1);
@ Growth: there is a locally bounded function C(x, p) such that
|F(t.x,p, a)Fq(t, x, p, )| < C(x,p)(1+ |ql),
|F(t, %, p, q)Fp(t, x, p, q)| < C(x, p)(L + |q]),
|F(t,x, p, q)Fx(t, x, p.q)| < C(x, p)(1 + |q]?);
® Positivity: we always have
Fe>0, FeFq+ }1|F,,|2 <0,
and if x is such that
FoFy + 711|FP 2=0in (0,1),
then F =0in (0,1) as well.
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