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Motivation

Variational problems

For x(t) : [0, 1]→ RN belonging to a suitable class of paths,

E (x) =

∫ 1

0
φ(x(t), x′(t)) dt, φ(y, z) : RN × RN → R,

Minimize in x : E (x).

Optimality system

−[φz(x(t), x′(t))]′ + φx(x(t), x′(t)) = 0 in (0, 1),

together with end-point conditions.

Comparison

−[f(x(t), x′(t)]′ + g(x(t), x′(t)) = 0 in (0, 1), x(0) = x(1) = 0.
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Idea

E (x) =
1

2

∫ 1

0
|y′(t)|2 dt,

−[f(x, x′) + y′]′ + g(x, x′) = 0 in (0, 1), y(0) = y(1) = 0.

VARIATIONAL PROBLEM

Minimize in x : E (x) under x(0) = x(1) = 0.

Program for an existence result:

1 the infimum m ≥ 0 vanishes, and
2 the infimum m = 0 is attained (in the appropriate class of paths).

What is special about this non-variational case?

• E is a non-local, non-linear functional through the operator x 7→ y.

• E is not a typical integral functional; hard to apply weak lower
semicontinuity based on convexity.

• Have to rely on smoothness and compactness through the classical
Palais-Smale condition.
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Assumptions, and main result

1 Linear growth in derivatives: f1(x), f0(x), g1(x), g0(x), and
C0,C2 ≥ 0 such that

|f(x, z)| ≤ f1(x)|z|+ f0(x), |g(x, z)| ≤ g1(x)|z|+ g0(x),

|g(x, z) · x| ≤ C2|z|+ C0|x|;

2 Coercivity and monotonicity: C1 > 0 with

C1|z|2 − C0|x| ≤ f(x, z) · z,
C1|z1 − z2|2 ≤ (f(x, z1)− f(x, z2)) · (z1 − z2),

C1|y|2 ≤ yfz(x, z) · y
‖fx‖L∞(RN×RN) + ‖gz‖L∞(RN×RN) + ‖gx‖L∞(RN×RN) < C1.

Theorem

Under indicated assumptions on the maps f and g, there is at least one
solution x.
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Basic fact

Cannot rely on the direct method of the Calculus of Variations: no
information on convexity and/or weak lower semicontinuity.

Proposition

E : H→ R, a smooth functional over a Hilbert space H. E is coercive
(E (x)→∞ if ‖x‖ → ∞), and enjoys the Palais-Smale property. Then
there are minimizers for E in H.

Palais-Smale condition.
Every sequence {xj} such that {E (xj)} is a bounded sequence of numbers,
and E ′(xj)→ 0 in H, admits a subsequence converging (strongly) in that
same space.

But also need: such minimizer x of E in H is such that E (x) = 0.
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A non-local, integral form

Operator:

x 7→ y : −[f(x, x′) + y′]′ + g(x, x′) = 0 in (0, 1), y(0) = y(1) = 0.

y(t) =(t − 1)

∫ 1

0
[f(x(s), x′(s))− (1− s)g(x(s), x′(s))] ds

+ (t − 1)

∫ t

0
g(x(s), x′(s)) ds

+

∫ 1

t
[f(x(s), x′(s))− (1− s)g(x(s), x′(s))] ds,

E (x) =
1

2

∫ 1

0

∣∣∣∣∫ 1

0
[f(x(s), x′(s))− (1− s)g(x(s), x′(s))] ds

+

∫ t

0
g(x(s), x′(s)) ds − f(x(t), x′(t))

∣∣∣∣2 dt.
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The derivative of E

X ∼ x =⇒ Y ∼ y

−[f(x+εX, x′+εX′)+y′+εY′]′+g(x+εX, x′+εX′) = 0, Y(0) = Y(1) = 0.

−[fx(x, x′)X + fz(x, x′)X′ + Y′]′ + gx(x, x′)X + gz(x, x′)X′ = 0,

〈E ′(x),X〉 =

∫ 1

0
y′(t) · Y′(t) dt

= −
∫ 1

0
[y′ · (fx(x, x′)X + fz(x, x′)X′) + y · (gx(x, x′)X + gz(x, x′)X′)] dt

= −
∫ 1

0
[(y′fx(x, x′) + ygx(x, x′)) · X + (y′fz(x, x′) + ygz(x, x′)) · X′] dt.

E ′(x) = X : −[X′+ y′fz(x, x′) + ygz(x, x′)]′+ y′fx(x, x′) + ygx(x, x′) = 0.
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Main proof

Coercivity: x itself as a test function∫ 1

0
[f(x, x′) · x′ + y′ · x′ + g(x, x′) · x] dt = 0.

Assumptions lead to:

C1‖x′‖2L2(0,1;RN) − C0‖x‖L∞(0,1;RN) ≤‖y′‖L2(0,1;RN)‖x′‖L2(0,1;RN)

+ C‖x′‖L2(0,1;RN).

C1‖x′‖2L2(0,1;RN) ≤ ‖y
′‖L2(0,1;RN)‖x′‖L2(0,1;RN) + 2C‖x′‖L2(0,1;RN).

C1‖x′‖L2(0,1;RN) − 2C ≤ ‖y′‖L2(0,1;RN).
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Palais-Smale condition

{xj}, {E (xj)}, bounded and E ′(xj)→ 0 in H1
0 (0, 1;RN): admits

a converging subsequence (strongly).

Coercivity: x′j ⇀ x′, xj → x.
Objective: ‖x′j − x′‖L2(0,1;RN) → 0.

Xj = E ′(xj):

−[X′j + y′j fz(xj , x
′
j) + yjgz(xj , x

′
j)]′ + y′j fx(xj , x

′
j) + yjgx(xj , x

′
j) = 0.

Also know:

−[f(xj , x
′
j) + y′j ]

′ + g(xj , x
′
j) = 0, −[f(x, x′) + y′]′ + g(x, x′) = 0.
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Two steps

1 E (xj) = (1/2)‖y′j‖2 → 0: yj , test function∫ 1

0
[(X′j + y′j fz(xj , x

′
j) + yjgz(xj , x

′
j)) · y′j

+ (y′j fx(xj , x
′
j) + yjgx(xj , x

′
j)) · yj ] dt = 0.

C1‖y′j‖2 ≤ −
∫ 1

0
[(X′j + yj(gz(xj , x

′
j) + fx(xj , x

′
j)
T ) · y′j

+ yjgx(xj , x
′
j) · yj ] dt

≤ ‖X′j‖ ‖y′j‖+
(
‖fx‖L∞(RN×RN) + ‖gz‖L∞(RN×RN)

+‖gx‖L∞(RN×RN)

)
‖y′j‖2L2(0,1;RN).

2 ‖x′j − x′‖ → 0: xj − x, test function∫ 1

0
[(f(xj , x

′
j)−f(x, x′)+(y′j−y′))·(x′j−x′)+(g(xj , x

′
j)−g(x, x′))·(xj−x)] dt = 0.
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Conclusion

C1‖x′j−x′‖2 ≤ ‖y′j‖ ‖x′j−x′‖+
∫ 1

0
[y′·(x′j−x′)+(g(xj , x

′
j)−g(x, x′))(xj−x)] dt.

Consequence:

• y′j → 0: first term on right-hand side converges to zero;

• x′j − x′ ⇀ 0: second term on right-hand side converges to zero;

• xj − x→ 0: third term on right-hand side converges to zero.

Interesting consequence

Under our hypotheses on the mappings f and g, we have

lim
E ′(x)→0

E (x) = 0.

Proof of main result.

• {xj}, minimizing for E : E ′(xj)→ 0, and x′j ⇀ x;

• E (xj)→ 0, xj → x (strong).

• x, a solution: E (x) = 0.

Pablo Pedregal (UCLM) Variational methods Clermont-Ferrand 11 / 13



Conclusion

C1‖x′j−x′‖2 ≤ ‖y′j‖ ‖x′j−x′‖+
∫ 1

0
[y′·(x′j−x′)+(g(xj , x

′
j)−g(x, x′))(xj−x)] dt.

Consequence:

• y′j → 0: first term on right-hand side converges to zero;

• x′j − x′ ⇀ 0: second term on right-hand side converges to zero;

• xj − x→ 0: third term on right-hand side converges to zero.

Interesting consequence

Under our hypotheses on the mappings f and g, we have

lim
E ′(x)→0

E (x) = 0.

Proof of main result.

• {xj}, minimizing for E : E ′(xj)→ 0, and x′j ⇀ x;

• E (xj)→ 0, xj → x (strong).

• x, a solution: E (x) = 0.

Pablo Pedregal (UCLM) Variational methods Clermont-Ferrand 11 / 13



Conclusion

C1‖x′j−x′‖2 ≤ ‖y′j‖ ‖x′j−x′‖+
∫ 1

0
[y′·(x′j−x′)+(g(xj , x

′
j)−g(x, x′))(xj−x)] dt.

Consequence:

• y′j → 0: first term on right-hand side converges to zero;

• x′j − x′ ⇀ 0: second term on right-hand side converges to zero;

• xj − x→ 0: third term on right-hand side converges to zero.

Interesting consequence

Under our hypotheses on the mappings f and g, we have

lim
E ′(x)→0

E (x) = 0.

Proof of main result.

• {xj}, minimizing for E : E ′(xj)→ 0, and x′j ⇀ x;

• E (xj)→ 0, xj → x (strong).

• x, a solution: E (x) = 0.

Pablo Pedregal (UCLM) Variational methods Clermont-Ferrand 11 / 13



Conclusion

C1‖x′j−x′‖2 ≤ ‖y′j‖ ‖x′j−x′‖+
∫ 1

0
[y′·(x′j−x′)+(g(xj , x

′
j)−g(x, x′))(xj−x)] dt.

Consequence:

• y′j → 0: first term on right-hand side converges to zero;

• x′j − x′ ⇀ 0: second term on right-hand side converges to zero;

• xj − x→ 0: third term on right-hand side converges to zero.

Interesting consequence

Under our hypotheses on the mappings f and g, we have

lim
E ′(x)→0

E (x) = 0.

Proof of main result.

• {xj}, minimizing for E : E ′(xj)→ 0, and x′j ⇀ x;

• E (xj)→ 0, xj → x (strong).

• x, a solution: E (x) = 0.

Pablo Pedregal (UCLM) Variational methods Clermont-Ferrand 11 / 13



Conclusion

C1‖x′j−x′‖2 ≤ ‖y′j‖ ‖x′j−x′‖+
∫ 1

0
[y′·(x′j−x′)+(g(xj , x

′
j)−g(x, x′))(xj−x)] dt.

Consequence:

• y′j → 0: first term on right-hand side converges to zero;

• x′j − x′ ⇀ 0: second term on right-hand side converges to zero;

• xj − x→ 0: third term on right-hand side converges to zero.

Interesting consequence

Under our hypotheses on the mappings f and g, we have

lim
E ′(x)→0

E (x) = 0.

Proof of main result.

• {xj}, minimizing for E : E ′(xj)→ 0, and x′j ⇀ x;

• E (xj)→ 0, xj → x (strong).

• x, a solution: E (x) = 0.

Pablo Pedregal (UCLM) Variational methods Clermont-Ferrand 11 / 13



Conclusion

C1‖x′j−x′‖2 ≤ ‖y′j‖ ‖x′j−x′‖+
∫ 1

0
[y′·(x′j−x′)+(g(xj , x

′
j)−g(x, x′))(xj−x)] dt.

Consequence:

• y′j → 0: first term on right-hand side converges to zero;

• x′j − x′ ⇀ 0: second term on right-hand side converges to zero;

• xj − x→ 0: third term on right-hand side converges to zero.

Interesting consequence

Under our hypotheses on the mappings f and g, we have

lim
E ′(x)→0

E (x) = 0.

Proof of main result.

• {xj}, minimizing for E : E ′(xj)→ 0, and x′j ⇀ x;

• E (xj)→ 0, xj → x (strong).

• x, a solution: E (x) = 0.

Pablo Pedregal (UCLM) Variational methods Clermont-Ferrand 11 / 13



Conclusion

C1‖x′j−x′‖2 ≤ ‖y′j‖ ‖x′j−x′‖+
∫ 1

0
[y′·(x′j−x′)+(g(xj , x

′
j)−g(x, x′))(xj−x)] dt.

Consequence:

• y′j → 0: first term on right-hand side converges to zero;

• x′j − x′ ⇀ 0: second term on right-hand side converges to zero;

• xj − x→ 0: third term on right-hand side converges to zero.

Interesting consequence

Under our hypotheses on the mappings f and g, we have

lim
E ′(x)→0

E (x) = 0.

Proof of main result.

• {xj}, minimizing for E : E ′(xj)→ 0, and x′j ⇀ x;

• E (xj)→ 0, xj → x (strong).

• x, a solution: E (x) = 0.

Pablo Pedregal (UCLM) Variational methods Clermont-Ferrand 11 / 13



Fully non-linear problems in non-divergence form

F(x(t), x′(t), x′′(t)) = 0 in (0, 1), x(0) = x(1) = 0.

E (x) =

∫ 1

0

1

2
|F(x(t), x′(t), x′′(t))|2 dt.

Theorem

Under appropriate assumptions, there is at least one solution x.
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Assumptions (for a scalar case)
1 Smoothness: F is smooth with respect to the variables (x , p, q);
2 Convexity: the function |F (t, x , p, q)|2 is a convex function of q;
3 Coercivity: there are positive constants C and M with

|F (t, x , p, q)| ≥ C |q| −M(|p|+ |x |+ 1), |x ′(0)| ≤ C (E (x) + 1);

4 Growth: there is a locally bounded function C (x , p) such that

|F (t, x , p, q)Fq(t, x , p, q)| ≤ C (x , p)(1 + |q|),
|F (t, x , p, q)Fp(t, x , p, q)| ≤ C (x , p)(1 + |q|2),

|F (t, x , p, q)Fx(t, x , p, q)| ≤ C (x , p)(1 + |q|2);

5 Positivity: we always have

Fq > 0, FxFq +
1

4
|Fp|2 ≤ 0,

and if x is such that

FxFq +
1

4
|Fp|2 ≡ 0 in (0, 1),

then F ≡ 0 in (0, 1) as well.
Pablo Pedregal (UCLM) Variational methods Clermont-Ferrand 13 / 13


