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Motivation

Motivation

In this talk we mainly study the problem

—Av = gds, in Q,
{ v =0, on 0Q, (1)

where Q is a subset of R3, ¢ is a one-dimensional curve strictly
included in @ and g belongs to L?(0).

Such problems occur:

1. in reduced models of fluid flows (Darcy's law in fractured
domains): in order to save computational resources, see
[Barenblatt-Entov-Ryzhick 90, Fabrie-Gallouét 00,
D'Angelo-Quarteroni 08],

2. in physical problems: corresponds to the idealization of a load
supported by o.

First difficulty: v ¢ H}(Q) because the Dirac mass ¢ H~1(Q).
Main Goal: Regularity results (useful for numerical applications).
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Motivation

Main results

We give such regularity results for two model problems:

1. o is a full line,

2. o a half-line.

For 1. we use Fourier transform technique, while for 2. we use a
Mellin transformation. In both cases we are reduced to a Helmholtz
problem in dimension two.

For this last problem we prove uniform estimates in standard or
weighted Sobolev spaces, taking the transformation back we obtain
the expected regularity result.
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Some basic notions

Weighted Sobolev spaces
Fundamental sol.

© Some basic notions
@ Weighted Sobolev spaces
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Some basic notions Weighted Sobolev spaces

Fundamental sol.

Weighted spaces

Let « be an arbitrary real number, Q be a domain of R" and r be
the distance to a part P of Q (that could vary at different
occurences).

e [2(Q; P) the Hilbert space made of measurable functions u st

ol gy = [ luo) Pr2 (x)oi < oc.
Q

e For m € N, we define the weighted Sobolev space

HE(Q: P) = {u € L3(2 P) | DVu € LE(Q P), V]3| < m}.

e The weighted Sobolev space of Kondratiev's type is defined by
V(R P) = {u € L2_ (R P) | F- D7y € 12(Q), V]9 < m}.

a—m
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Some basic notions Weighted Sobolev spaces

Fundamental sol.

Proposition 1.1

Let Q2 be a bounded domain of R”? s.t. 0 € Q and let m € N*. For

alla>m—gwe have

HM(Q; 0) = V™(Q;0).

Pf Based on Hardy's inequalities.
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Some basic notions Weighted Sobolev spaces

Fundamental sol.

Regularity in weighted spaces

Theorem 1.3

Let Q be a bd domain of R? with a C™ bdy, m >2ora C™
compact manifold without bdy. Fix a point B € Q. Let L be an
elliptic op. of order 2 with coeff. in C™(Q) and o € R. Let
u€ H2_(Q\ {B}) be a solution of
Lu=f in Q,
{ u=0 on 09,

such that u € V! 1(Q; B) and f € V"2(Q; B).
Then v € V'(Q; B) with the estimate

HUHV[;’(Q;B) S HfHV(;"*Z(Q;B) + HUva_mH(Q;B)-

Pf Based on a localization argument and a diadic covering.
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Some basic notions Weighted Sobolev spaces

Fundamental sol.

Proposition 1.2

Let Q be a bounded domain of R” with a lip. bdy and let m € N*.
VA € [0,00[, w € H™(Q), set

m
IWlizan =D A wliz o
1=0

Then w70 ~ (L+ X7 wlgq + w7 o

Pf Based on interpolation inequalities.
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Some basic notions

Weighted Sobolev spaces
Fundamental sol.

© Some basic notions
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Some basic notions Weighted Sobolev spaces

Fundamental sol.

Fundamental solution

Definition 1.4
For k € C\{0}, we define

Hi(x,y) = H(l) (kv/x2 + y2),¥(x,y) € R2\ {(0,0)},
HO(Xay) = Zln V x2 +y2,V(X,y) S R2 \ {(070)}7

where Hél)(z) is the Hankel function of type 1 and order 0.

Fund. sol.: (A + k?)Hy = g in R2. J

Serge Nicaise Regularity of sol. of some bvp with Dirac



Some basic notions Weighted Sobolev spaces

Fundamental sol.

Regularity of Hy

Theorem 1.5

Let Q be a bounded domain of R2, m > 0and o > m — 1. Let
ke C\{0}s. t. T <argk <3T. Then

o H, If|k’>1/
%k—{ Ho if |kl <1,

belongs to V"(2; 0) with

m

S KPR sy S 1
1=0

Pf Behavior of H, and Hy near 0 and oc.



Helmholtz pb with a smooth rhs
Helmholtz pb with a Dirac

Helmholtz pb in 2D

© Helmholtz pb in 2D
@ Helmholtz pb with a smooth rhs
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Helmholtz pb with a smooth rhs

Helmholtz pb in 2D Helmholtz pb with a Dirac

Reg. of the sol. in spaces with a parameter

Theorem 3.1

Let Q C R? be bounded, let h € L2(Q) and k € C s. t.
T largk < 3%. Let w € H}(Q) sol. of

(A+K)w=nh, inQ, )
w =0, on 0f).

1. Then we have
HWHl,Q.\kHl S ”hHO,Q-
2. Moreover, Ym > 2, if 9Q € C™ and h € H™?(Q) then
w € H™(Q) with
(Wl ma,ki+1 S 1Al m—2,0,k+1- (3)
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Helmholtz pb with a smooth rhs
Helmholtz pb with a Dirac

Helmholtz pb in 2D

For point 1, we use the variational formulation
Vv € H3 (Q), /VWV\/k2/Wv:/hv.
Q Q Q

and Poincaré’s inequality.
For point 2, we use a priori estimates of ADN and a bootstrap
argument.
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Helmholtz pb with a smooth rhs
Helmholtz pb with a Dirac

Helmholtz pb in 2D

Helmholtz pb in 2D
() p

@ Helmholtz pb with a Dirac mass
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Helmholtz pb with a smooth rhs

Helmholtz pb in 2D Helmholtz pb with a Dirac

Helmholtz pb with a Dirac mass

Let ©Q be a bounded domain of R%2s. t. 0 € Q and let k € C s. t.
7 Zargk < %TW'
Consider the pb

(A + k2)uk = 50 in Q,
u, =20 on 0Q).

The case k = 0 was treated in [Fabrie-Gallouét 00,
Araya-Behrens-Rodriguez 06], where they prove the existence of a
sol. in WLP(Q) for all p < 2.

GOALS:

L. ux € WHP(Q) for all p < 2 (weak sol.)

2. u € VI(;0), forallm>1a>m—1.
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Helmholtz pb with a smooth rhs
Helmholtz pb with a Dirac

Helmholtz pb in 2D

Use the fund. sol.

[ He iflk > 1,
T '—{ Ho if [k| < 1.

Fix n a cut-off fct. s. t. for 6 €]0, w[ fixed:

n=1 on B(0,9),
n=20 on B(0,26)¢,

and decompose uy in the form

ug = NHxk + wg, (4)
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Helmholtz pb with a smooth rhs

Helmholtz pb in 2D Helmholtz pb with a Dirac

Existence and uniqueness of a weak sol.

where wy is sol. of

(A + kz)Wk = hy in Q,
Wy = 0 on OQ,

2VnV Hi + AnHy if |k| > 1,
he =
2VnV Ho + AnHy — k®nHy  if |k| < 1.

o Hy € WHP(Q) for all p < 2.
e he € L2(Q) = var. form. + Lax Milgram = wy € H}(Q).
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Helmholtz pb with a smooth rhs

Helmholtz pb in 2D Helmholtz pb with a Dirac

Higher regularity of the solution

Theorem 3.2

Let m>1, a>m—1and Q be a bounded domain of R? of class
Cms. t.0€Q Let keCs. t. 7 <argk < %TW- Then the sol. wuy

of
(A+ K)ug =60 in Q, (5)
u, =20 on 0%,

belongs to V7(2; 0) with

/
Z\kl2 luellym-r g0y S 1-
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Helmholtz pb with a smooth rhs
Helmholtz pb with a Dirac

Helmholtz pb in 2D

According to the splitting (4), it suffices to estimate Hy and wy.

By , we have H, € V7(€;0) for « > m — 1 and the right
estimate.

First case: |k| > 1. As H™/(Q) — V/"=/(Q;0), it suffices to
show that

||Wk||%n,(2,|k| Z|k|2 ||Wk||m IQ

The remainder of the proof is based on the application of
by using the reg. of H, in weighted Sobolev spaces.
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Helmholtz pb with a smooth rhs

Helmholtz pb in 2D Helmholtz pb with a Dirac

Proof ctd

Second case: |k| < 1. We only need to check that
IwilBoano) < 1. (6)
holds. For m = 1, we notice that
[hicllo.e < [Holvaa0) + 1Hollve (a0) S 1

for any 0 < € < 1. Hence by we deduce that

IwillLa S 1,

that shows (6) for m = 1 since for o > 0,
HY(Q) — HX(2;0) — V1(Q;0) due to
For m > 2, we use an iterative argument by looking at wj as
solution of
Awy = hy — KPwy.

Then we apply )
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The Laplace eq. in 3D with an infinite fracture

Theorem 2.1

Let meN* > m—1and Q = Q x R where Q is a bounded
domain of R?, of class C™ s. t. 0 € Q. Let ¢ be the z-axis, that is
the infinite fracture. Let g € L?(R). Then the solution u of

—Au=qgd,, inQ,
{ u=20, on 0@, (7)

belongs to V"(Q; o) with the estimate

lul

Vo (Qio) S ”q”O,IR{-
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The Laplace eq. in 3D with an infinite fracture

Pf

Applying partial Fourier transform in z to (7), we observe that

§2(u) is sol. of

{ (—A+&)F-(u) =F(g)0 inQ,
§o(u)=0 on 09,

Hence §. (u(x,y,)) (&) = F(q)(€) ue(x,y) where ug is sol. of

(—A + gQ)Ug =dg inQ,
ug =0 on 0%,

By , we get

Z\a?’uuguvm a0 S ®)
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The Laplace eq. in 3D with an infinite fracture

Pf

On the other hand Parseval’s identity implies that

V(@) = 2/5\2*’332 W2 s @S (9)

B3=0p

By (8) and (9), we obtain
1oy S / 3(a)(E) P

Again Parseval =

lullvm(@:o)
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The Laplace eq. in 3D with a semi infinite fracture

Consider the pb
—Au=gqd, inR3 (10)

where o is the semi-axis of positive x.

Theorem 4.1

Letm>1land m—1<a<m-—3 Let ge [2(RT) with
€ =a — (m—1). Then the sol. u of pb (10) belongs to V/™(R3; 7)
with

HUHV(Q"(R3;0) S HCIHLg(Rﬂ-

Pf Mellin transformation and use of
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The transform

For a function u € D(0, c0) the Mellin transform M[u] of u is
defined at A\ € C by

M[u)(A) = /OOO ()

By the change of variable p = ef, we see that

dr

r

o

M[u](\) = / et y(et) dt.

— 00

Hence if A =1+ i§, we see that M[u](\) = §(e " u(e))(€).
Similarly if K is a cone in R"” with vertex 0, if p denotes the
distance to the origin and © = %, then

M[u](), ©) = /0 h p—ku(pef’p”.
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