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Motivation

In this talk we mainly study the problem{
−∆v = qδσ, in Q,

v = 0, on ∂Q,
(1)

where Q is a subset of R3, σ is a one-dimensional curve strictly
included in Q and q belongs to L2(σ).
Such problems occur:
1. in reduced models of fluid flows (Darcy’s law in fractured
domains): in order to save computational resources, see
[Barenblatt-Entov-Ryzhick 90, Fabrie-Gallouët 00,
D’Angelo-Quarteroni 08],
2. in physical problems: corresponds to the idealization of a load
supported by σ.
First difficulty: v /∈ H1

0 (Q) because the Dirac mass 6∈ H−1(Q).
Main Goal: Regularity results (useful for numerical applications).
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Main results

We give such regularity results for two model problems:
1. σ is a full line,
2. σ a half-line.
For 1. we use Fourier transform technique, while for 2. we use a
Mellin transformation. In both cases we are reduced to a Helmholtz
problem in dimension two.
For this last problem we prove uniform estimates in standard or
weighted Sobolev spaces, taking the transformation back we obtain
the expected regularity result.
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Weighted Sobolev spaces

Let α be an arbitrary real number, Ω be a domain of Rn and r be
the distance to a part P of Ω (that could vary at different
occurences).
• L2

α(Ω;P) the Hilbert space made of measurable functions u st

‖u‖2L2α(Ω;P) =

∫
Ω

|u(x)|2r2α(x)dx <∞.

• For m ∈ N, we define the weighted Sobolev space

Hm
α (Ω;P) = {u ∈ L2

α(Ω;P) | Dγu ∈ L2
α(Ω;P),∀|γ| ≤ m}.

• The weighted Sobolev space of Kondratiev’s type is defined by

Vm
α (Ω;P) = {u ∈ L2

α−m(Ω;P) | rα−m+|γ|Dγu ∈ L2(Ω), ∀|γ| ≤ m}.
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Proposition 1.1

Let Ω be a bounded domain of Rn s.t. 0 ∈ Ω and let m ∈ N∗. For
all α > m − n

2 we have
Hm
α (Ω; 0) = Vm

α (Ω; 0).

Pf Based on Hardy’s inequalities.
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Regularity in weighted Sobolev spaces

Theorem 1.3

Let Ω be a bd domain of R2 with a Cm bdy, m ≥ 2 or a Cm

compact manifold without bdy. Fix a point B ∈ Ω. Let L be an
elliptic op. of order 2 with coeff. in Cm(Ω̄) and α ∈ R. Let
u ∈ H2

loc(Ω \ {B}) be a solution of{
Lu = f in Ω,
u = 0 on ∂Ω,

such that u ∈ V 1
α−m+1(Ω;B) and f ∈ Vm−2

α (Ω;B).
Then u ∈ Vm

α (Ω;B) with the estimate

‖u‖Vm
α (Ω;B) . ‖f ‖Vm−2

α (Ω;B) + ‖u‖V 1
α−m+1(Ω;B).

Pf Based on a localization argument and a diadic covering.
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Proposition 1.2

Let Ω be a bounded domain of Rn with a lip. bdy and let m ∈ N∗.
∀λ ∈ [0,∞[, w ∈ Hm(Ω), set

‖w‖2m,Ω,λ :=
m∑
l=0

λ2l‖w‖2m−l ,Ω.

Then ‖w‖2m,Ω,λ ∼ (1 + λ2m)‖w‖20,Ω + ‖w‖2m,Ω.

Pf Based on interpolation inequalities.
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Fundamental solution

Definition 1.4
For k ∈ C\{0}, we define

Hk(x , y) :=
i

4
H

(1)
0 (k

√
x2 + y2),∀(x , y) ∈ R2 \ {(0, 0)},

H0(x , y) :=
1
2π

ln
√

x2 + y2,∀(x , y) ∈ R2 \ {(0, 0)},

where H
(1)
0 (z) is the Hankel function of type 1 and order 0.

Fund. sol.: (∆ + k2)Hk = δ0 in R2.
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Regularity of Hk

Theorem 1.5

Let Ω be a bounded domain of R2, m ≥ 0 and α > m − 1. Let
k ∈ C\{0} s. t. π

4 ≤ arg k ≤ 3π
4 . Then

Hk =

{
Hk if |k| > 1,
H0 if |k| ≤ 1,

belongs to Vm
α (Ω; 0) with

m∑
l=0

|k |2l‖Hk‖2Vm−l
α (Ω;0)

. 1.

Pf Behavior of Hk and H0 near 0 and ∞.
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Reg. of the sol. in Sobolev spaces with a parameter

Theorem 3.1

Let Ω ⊂ R2 be bounded, let h ∈ L2(Ω) and k ∈ C s. t.
π
4 ≤ arg k ≤ 3π

4 . Let w ∈ H1
0 (Ω) sol. of{

(∆ + k2)w = h, in Ω,
w = 0, on ∂Ω.

(2)

1. Then we have
‖w‖1,Ω,|k|+1 . ‖h‖0,Ω.

2. Moreover, ∀m ≥ 2, if ∂Ω ∈ Cm and h ∈ Hm−2(Ω) then
w ∈ Hm(Ω) with

‖w‖m,Ω,|k|+1 . ‖h‖m−2,Ω,|k|+1. (3)
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Proof

For point 1, we use the variational formulation

∀v ∈ H1
0 (Ω),

∫
Ω

∇w ∇v − k2
∫
Ω

w v = −
∫
Ω

h v .

and Poincaré’s inequality.
For point 2, we use a priori estimates of ADN and a bootstrap
argument.
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Helmholtz pb with a Dirac mass

Let Ω be a bounded domain of R2 s. t. 0 ∈ Ω and let k ∈ C s. t.
π
4 ≤ arg k ≤ 3π

4 .
Consider the pb {

(∆ + k2)uk = δ0 in Ω,
uk = 0 on ∂Ω.

The case k = 0 was treated in [Fabrie-Gallouët 00,
Araya-Behrens-Rodriguez 06], where they prove the existence of a
sol. in W 1,p(Ω) for all p < 2.
GOALS:
1. uk ∈W 1,p(Ω) for all p < 2 (weak sol.)
2. uk ∈ Vm

α (Ω; 0), for all m ≥ 1, α > m − 1.
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Tools

Use the fund. sol.

Hk :=

{
Hk if |k | > 1,
H0 if |k | ≤ 1.

Fix η a cut-off fct. s. t. for δ ∈]0, dist(0,∂Ω)
2 [ fixed:{

η = 1 on B(0, δ),
η = 0 on B(0, 2δ)c ,

and decompose uk in the form

uk = ηHk + wk , (4)

Serge Nicaise Regularity of sol. of some bvp with Dirac
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Existence and uniqueness of a weak sol.

where wk is sol. of{
(∆ + k2)wk = hk in Ω,

wk = 0 on ∂Ω,

hk =


2∇η∇Hk + ∆ηHk if |k| > 1,

2∇η∇H0 + ∆ηH0 − k2ηH0 if |k| ≤ 1.

• Hk ∈W 1,p(Ω) for all p < 2.
• hk ∈ L2(Ω)⇒ var. form. + Lax Milgram⇒ wk ∈ H1

0 (Ω).
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Higher regularity of the solution

Theorem 3.2

Let m ≥ 1, α > m − 1 and Ω be a bounded domain of R2 of class
Cm s. t. 0 ∈ Ω. Let k ∈ C s. t. π

4 ≤ arg k ≤ 3π
4 . Then the sol. uk

of {
(∆ + k2)uk = δ0 in Ω,

uk = 0 on ∂Ω,
(5)

belongs to Vm
α (Ω; 0) with

m∑
l=0

|k |2l‖uk‖2Vm−l
α (Ω;0)

. 1.
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Proof

According to the splitting (4), it suffices to estimate Hk and wk .
By Thm. 1.5 , we have Hk ∈ Vm

α (Ω; 0) for α > m − 1 and the right
estimate.
First case: |k | > 1. As Hm−l(Ω) ↪→ Vm−l

α (Ω; 0), it suffices to
show that

‖wk‖2m,Ω,|k| =
m∑
l=0

|k |2l‖wk‖2m−l ,Ω . 1.

The remainder of the proof is based on the application of Thm. 3.1

by using the reg. of Hk in weighted Sobolev spaces.
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Proof ctd

Second case: |k| ≤ 1. We only need to check that

‖wk‖2Vm
α (Ω;0) . 1, (6)

holds. For m = 1, we notice that

‖hk‖0,Ω . |H0|V 1
ε (Ω;0) + ‖H0‖V 0

ε−1(Ω;0) . 1

for any 0 < ε < 1. Hence by Thm. 3.1 we deduce that

‖wk‖1,Ω . 1,

that shows (6) for m = 1 since for α > 0,
H1(Ω) ↪→ H1

α(Ω; 0) ↪→ V 1
α(Ω; 0) due to Prop. 1.1

For m ≥ 2, we use an iterative argument by looking at wk as
solution of

∆wk = hk − k2wk .

Then we apply Thm. 1.3 .
Serge Nicaise Regularity of sol. of some bvp with Dirac
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The Laplace eq. in 3D with an infinite fracture

Theorem 2.1
Let m ∈ N∗, α > m − 1 and Q = Ω× R where Ω is a bounded
domain of R2, of class Cm s. t. 0 ∈ Ω. Let σ be the z-axis, that is
the infinite fracture. Let q ∈ L2(R). Then the solution u of{

−∆u = qδσ, in Q,
u = 0, on ∂Q,

(7)

belongs to Vm
α (Q;σ) with the estimate

‖u‖Vm
α (Q;σ) . ‖q‖0,R.
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Pf

Applying partial Fourier transform in z to (7), we observe that
Fz(u) is sol. of{

(−∆ + ξ2)Fz(u) = F(q)δ0 in Ω,
Fz(u) = 0 on ∂Ω,

Hence Fz

(
u(x , y , ·)

)
(ξ) = F(q)(ξ) uξ(x , y) where uξ is sol. of{
(−∆ + ξ2)uξ = δ0 in Ω,

uξ = 0 on ∂Ω,

By Thm. 3.2 , we get
m∑
l=0

|ξ|2l‖uξ‖2Vm−l
α (Ω;0)

. 1. (8)
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Pf

On the other hand Parseval’s identity implies that

‖u‖2Vm
α (Q;σ) =

1
2π

m∑
β3=0

∫
R

|ξ|2β3‖Fz(u)‖2
V

m−β3
α (Ω;0)

dξ. (9)

By (8) and (9), we obtain

‖u‖2Vm
α (Q;σ) .

∫
R

|F(q)(ξ)|2dξ.

Again Parseval ⇒

‖u‖Vm
α (Q;σ) . ‖q‖0,R.
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The Laplace eq. in 3D with a semi infinite fracture

Consider the pb
−∆u = q δσ in R3, (10)

where σ is the semi-axis of positive x .

Theorem 4.1

Let m ≥ 1 and m − 1 < α < m − 1
2 . Let q ∈ L2

ε (R+) with
ε = α− (m− 1). Then the sol. u of pb (10) belongs to Vm

α (R3;σ)
with

‖u‖Vm
α (R3;σ) . ‖q‖L2ε(R+).

Pf Mellin transformation and use of Thm. 1.3 .
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The Mellin transform

For a function u ∈ D(0,∞) the Mellin transform M[u] of u is
defined at λ ∈ C by

M[u](λ) =

∫ ∞
0

r−λu(r)
dr

r
.

By the change of variable ρ = et , we see that

M[u](λ) =

∫ ∞
−∞

e−λtu(et) dt.

Hence if λ = η + iξ, we see that M[u](λ) = F(e−η·u(e ·))(ξ).
Similarly if K is a cone in Rn with vertex 0, if ρ denotes the
distance to the origin and Θ = x

ρ , then

M[u](λ,Θ) =

∫ ∞
0

ρ−λu(ρΘ)
dρ

ρ
.
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